People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zheng, Heng
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Optimizing methane plasma pyrolysis for instant hydrogen and high-quality carbon productioncitations
- 2023Evaluation of Slag Foaming Behavior Using Renewable Carbon Sources in Electric Arc Furnace-Based Steel Productioncitations
- 2023Phase Transition of Magnetite Ore Fines During Oxidation Probed by In Situ High-Temperature X-Ray Diffractioncitations
- 2023The Behavior of Phosphorus in the Hydrogen-Based Direct Reduction—Smelter Ironmaking Routecitations
- 2023The Behavior of Direct Reduced Iron in the Electric Arc Furnace Hotspotcitations
- 2022Long-Term Reoxidation of Hot Briquetted Iron in Various Prepared Climatic Conditionscitations
- 2022Surface Morphology and Structural Evolution of Magnetite-Based Iron Ore Fines During the Oxidationcitations
Places of action
Organizations | Location | People |
---|
article
Phase Transition of Magnetite Ore Fines During Oxidation Probed by In Situ High-Temperature X-Ray Diffraction
Abstract
The reduction of magnetite-based iron ore fines in a hydrogen-induced fluidized bed becomes an attractive fossil-free ironmaking route. Our previous study showed that a prior oxidation treatment of magnetite was helpful to improve its fluidization and reduction behavior. However, the underlying oxidation mechanisms of magnetite ore fines remained unclear and required further investigations. In this study, two magnetite ore brands were analyzed via in situ high-temperature X-ray diffraction (HT-XRD) during oxidation, to investigate the thermal transformation of Fe3O4 to α-Fe2O3 at crystal scale. The lattice constants and crystallite sizes of both phases and oxidation degree were evaluated at different temperatures based on the HT-XRD patterns. The lattice constants of Fe3O4 and α-Fe2O3 increased with an increase in temperature due to the thermal expansion and can be successfully fitted with temperature by second-order polynomials. With Fe3O4 being oxidized into Fe2O3, the Fe2O3 crystallite grew and showed a certain growth habit. The Fe2O3 crystallite grew faster along the a/b axis than the c axis. The oxidation kinetics followed the parabolic law as shown by the sigmoid-shaped oxidation degree curve, suggesting that the solid diffusion of ions was the rate-limiting step.