People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zheng, Heng
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Optimizing methane plasma pyrolysis for instant hydrogen and high-quality carbon productioncitations
- 2023Evaluation of Slag Foaming Behavior Using Renewable Carbon Sources in Electric Arc Furnace-Based Steel Productioncitations
- 2023Phase Transition of Magnetite Ore Fines During Oxidation Probed by In Situ High-Temperature X-Ray Diffractioncitations
- 2023The Behavior of Phosphorus in the Hydrogen-Based Direct Reduction—Smelter Ironmaking Routecitations
- 2023The Behavior of Direct Reduced Iron in the Electric Arc Furnace Hotspotcitations
- 2022Long-Term Reoxidation of Hot Briquetted Iron in Various Prepared Climatic Conditionscitations
- 2022Surface Morphology and Structural Evolution of Magnetite-Based Iron Ore Fines During the Oxidationcitations
Places of action
Organizations | Location | People |
---|
article
Surface Morphology and Structural Evolution of Magnetite-Based Iron Ore Fines During the Oxidation
Abstract
The use of magnetite-based iron ore fines by means of fluidized bed technology has become a promising route to produce direct reduced iron. The significant influence of a prior oxidation treatment, which occurs in the preheating stage, on the subsequent fluidization and reduction behavior was observed in our previous study. As a result, it is important to investigate the oxidation of magnetite-based iron ore fines for an optimization of the proposed route. Three magnetite-based iron ore brands were analyzed. The oxidation characteristics are investigated based on thermogravimetric analysis. The surface morphology, structural evolution, and phase transformation were studied with a scanning electron microscope, an optical light microscope, and a high-temperature-X-ray diffraction (HT-XRD), respectively. The three samples showed different oxidation capacity indexes (OCIs) but similar TG-DTG curves. The oxidation rate peaks at around 330 °C and 550 °C indicated the formation of γ-Fe2O3 and α-Fe2O3. The hematite phase shows a particular growth habit. The oxidation first occurs at the surface, forming gridlike hematite structures, and then extends to the inside, resulting in hematite needles. The specific surface area and pore volume decrease significantly due to the sintering effect during oxidation.