Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wilcox, D. P.

  • Google
  • 2
  • 6
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Quantitative Characterization of Inclusions in Continuously Cast High-Carbon Steel11citations
  • 2014Effect of early stages of thermomechanical processing on inclusions in high carbon steel6citations

Places of action

Chart of shared publication
Todd, I.
2 / 37 shared
Tsakiropoulos, P.
2 / 33 shared
Faraji, Masoumeh
2 / 15 shared
Thackray, R.
1 / 3 shared
Howe, A. A.
2 / 6 shared
Thackray, R. P.
1 / 4 shared
Chart of publication period
2015
2014

Co-Authors (by relevance)

  • Todd, I.
  • Tsakiropoulos, P.
  • Faraji, Masoumeh
  • Thackray, R.
  • Howe, A. A.
  • Thackray, R. P.
OrganizationsLocationPeople

article

Quantitative Characterization of Inclusions in Continuously Cast High-Carbon Steel

  • Todd, I.
  • Tsakiropoulos, P.
  • Wilcox, D. P.
  • Faraji, Masoumeh
  • Thackray, R.
  • Howe, A. A.
Abstract

Existing standards for the characterization of the size, morphology, chemistry, and distribution of inclusions in steels using different techniques are briefly reviewed in this work. Strengths and shortfalls of different methods are discussed, and a combination of different criteria is used to quantitatively characterize the inclusions in a continuously cast high-carbon steel. It is shown that the main elements in the inclusions for the studied steel were Mn, S, Ti, Al, and oxygen and that alongside MnS and some Al2O3 inclusions many non-metallic inclusions appeared in complex forms, consisting of silicates, sulfides, and different types of oxides. Duplex inclusions, mainly cores of Al2O3, or SiO2 surrounded by MnS were the most common complex multiphase inclusions in this steel. An industrial approach was used to classify the inclusions into thirteen different oxide types. Based upon this approach, data are presented according to the chemistry of inclusions using diagrams featuring different quantitative parameters. Furthermore, it is shown that the number of oxides per unit area and the size of oxides, respectively, decreased and increased with increasing distance from the surface of the bloom which had solidified at the highest cooling rate.<br/>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • Carbon
  • inclusion
  • Oxygen
  • strength
  • steel