Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Xing, X.

  • Google
  • 1
  • 4
  • 43

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Effects of annealing on microstructure and microstrength of metallurgical coke43citations

Places of action

Chart of shared publication
Rogers, H.
1 / 1 shared
Ostrovski, O.
1 / 1 shared
Zhang, G.
1 / 9 shared
Zulli, Paul
1 / 7 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Rogers, H.
  • Ostrovski, O.
  • Zhang, G.
  • Zulli, Paul
OrganizationsLocationPeople

article

Effects of annealing on microstructure and microstrength of metallurgical coke

  • Rogers, H.
  • Ostrovski, O.
  • Zhang, G.
  • Zulli, Paul
  • Xing, X.
Abstract

Two metallurgical cokes were heat treated at 1673 K to 2273 K (1400 C to 2000 C) in a nitrogen atmosphere. The effect of heat treatment on the microstructure and microstrength of metallurgical cokes was characterized using X-ray diffraction, Raman spectroscopy, and ultra-microindentation. In the process of heat treatment, the microstructure of the metallurgical cokes transformed toward the graphite structure. Raman spectroscopy of reactive maceral-derived component (RMDC) and inert maceral-derived component (IMDC) indicated that the graphitisation degree of the RMDC was slightly lower than that of the IMDC in the original cokes; however graphitisation of the RMDC progressed faster than that of the IMDC during annealing, and became significantly higher after annealing at 2273 K (2000 C). The microstrength of cokes was significantly degraded in the process of heat treatment. The microstrength of the RMDC was lower, and of its deterioration caused by heat treatment was more severe than IMDC. The degradation of the microstrength of cokes was attributed to their increased graphitisation degree during the heat treatment. © 2013 The Minerals, Metals & Materials Society and ASM International.

Topics
  • microstructure
  • mineral
  • x-ray diffraction
  • reactive
  • Nitrogen
  • annealing
  • Raman spectroscopy
  • graphitisation