People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wilson, Nick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2018An examination of the composition and microstructure of coarse intermetallic particles in AA2099-T8, including Li detectioncitations
- 2015The influence of rare earth mercaptoacetate on the initiation of corrosion on AA2024-T3 Part II: The influence of intermetallic compositions within heavily attacked sitescitations
- 2015The influence of rare earth mercaptoacetate on the initiation of corrosion on AA2024-T3 Part I: Average statistics of each intermetallic compositioncitations
- 2013A consistent description of intermetallic particle composition: An analysis of ten batches of AA2024-T3citations
- 2013Investigation into the influence of carbon contamination on the corrosion behavior of aluminum microelectrodes and AA2024-T3citations
- 2011Metal anode performance in low-temperature electrolytes for aluminum productioncitations
Places of action
Organizations | Location | People |
---|
article
Metal anode performance in low-temperature electrolytes for aluminum production
Abstract
An investigation has been undertaken into the performance of metal alloy anodes used to produce aluminum via an electrochemical method. Alumina was electrolyzed in NaF/AlF3 and KF/AlF3 electrolytes and mixtures thereof with copper-nickel-iron (Cu:Ni:Fe) alloy anodes and titanium diboride (TiB2) cathodes. The operating temperatures of the electrochemical cells ranged from 973 K to 1123 K (700 degC to 850 degC), with an anode current density of 5000 A/m2. Cells ranged in current capacity from 10 to 300 amperes, with oxygen gas formed at the anode and molten aluminum collected from the cathode. Posttest anodes were sectioned, and elemental maps were performed to characterize the distribution of the chemical phases, including the metal electrodes, bath phases, and aluminum metal production, which were used to determine the reaction mechanisms of the cell. The metal alloy slowly corroded and formed an adherent, electronically conducting nickel ferrite plus copper scale during the operation of the cell. The proposed mechanisms of the anode performance are described herein.