Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kawagishi, Kyoko

  • Google
  • 1
  • 5
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Effect of Solution Heat-Treatment on the Oxidation Resistance of Ni-Base Single-Crystal Superalloy1citations

Places of action

Chart of shared publication
Yokokawa, Tadaharu
1 / 1 shared
Tabata, Chihiro
1 / 1 shared
Suzuki, Shinsuke
1 / 8 shared
Osada, Toshio
1 / 5 shared
Ikeda, Ayako
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Yokokawa, Tadaharu
  • Tabata, Chihiro
  • Suzuki, Shinsuke
  • Osada, Toshio
  • Ikeda, Ayako
OrganizationsLocationPeople

article

Effect of Solution Heat-Treatment on the Oxidation Resistance of Ni-Base Single-Crystal Superalloy

  • Yokokawa, Tadaharu
  • Tabata, Chihiro
  • Kawagishi, Kyoko
  • Suzuki, Shinsuke
  • Osada, Toshio
  • Ikeda, Ayako
Abstract

<jats:title>Abstract</jats:title><jats:p>To clarify the effect of solution heat-treatment on the oxidation resistance of Ni-base single-crystal superalloy TMS-238, the evaluation of dendrite/inter-dendrite segregation of alloying elements in the as-cast and heat-treated samples, and its effect on cyclic oxidation resistance were investigated. Cyclic oxidation test results at 1100 °C for up to 150 cycles clearly showed that the as-cast samples with element segregations had lower oxidation resistance compared to heat-treated samples with homogeneous structure. Further, for the as-cast sample, rapid growth and spallation of oxide consisting of NiO, Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> were observed around the dendrite core for 10 cycles of oxidation. Analysis of sub-surface on sample isothermally oxidized at 1100 °C for 10 minutes showed that rapid oxide growth is due to the formation of discontinuous Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> layer at dendrite core with lower Al concentration. Furthermore, in this study, the threshold value of Al concentration and Gibbs energy for the formation of continuous Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> layer were estimated and determined to be around 5.2 wt pct and − 556.6 ± 0.5 kJ/mol, respectively. This indicated that the solution heat-treatment for TMS-238 should be conducted above 1305 °C for exhibiting oxidation resistance at 1100 °C, to meet the threshold value within the whole region between dendrite and inter-dendrite.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • superalloy