People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arnoldt, Aurel Ramon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Optimizing the Zn and Mg contents of Al–Zn–Mg wrought alloys for high strength and industrial-scale extrudabilitycitations
- 2024Differential scanning calorimetry of age-hardenable aluminium alloys: effects of sample preparation, experimental conditions, and baseline correctioncitations
- 2024Simultaneous laser ultrasonic measurement of sound velocities and thickness of plates using combined mode local acoustic spectroscopycitations
- 2024Modeling of Texture Development during Metal Forming Using Finite Element Visco-Plastic Self-Consistent Modelcitations
- 2024Parameter study of extrusion simulation and grain structure prediction for 6xxx alloys with varied Fe contentcitations
- 2023Tolerance of Al–Mg–Si Wrought Alloys for High Fe Contents: The Role of Effective Sicitations
- 2022Investigations on a ternary Mg-Ca-Si wrought alloy extruded at moderate temperaturescitations
- 2022Analysis of second phase particles in metals using deep learning: Segmentation of nanoscale dispersoids in 6xxx series aluminium alloys (Al-Mg-Si)citations
- 2022Influence of different homogenization heat treatments on the microstructure and hot flow stress of the aluminum alloy AA6082citations
Places of action
Organizations | Location | People |
---|
article
Tolerance of Al–Mg–Si Wrought Alloys for High Fe Contents: The Role of Effective Si
Abstract
Aluminum scrap is often contaminated with steel parts, leading to accumulation of Fe in recycled Al alloys. Consequently, low limits for Fe in Al wrought alloys are difficult to meet by recycling without dilution with primary Al. Wrought alloys with a higher tolerance for Fe could help overcome this problem and improve the sustainability of Al wrought products. Here we study the effects of increasing the Fe content in EN AW-6060, 6005A, and 6082 from 0.2 to 0.7 wt pct. The microstructure and mechanical properties of the alloys after extrusion and artificial ageing are compared to the standard alloys. We found that 6082 is more tolerant to above-standard Fe contents than 6005A, which in turn is more tolerant than 6060: the strength of the 6082-based alloy with increased Fe content is comparable to that of standard 6082 and the elongation at break is increased. In contrast, the artificial ageing potential of the 6060-based alloy with more Fe is drastically reduced compared to 6060. This data and literature values show that the effective Si content is a good overall predictor of alloy strength. Effective Si is not bound in AlFeSi-type phases and is available for precipitation hardening. Additional effects of increased Fe levels are discussed.