Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hartung, C.

  • Google
  • 3
  • 13
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023The Role of Boron in Low Copper Spheroidal Graphite Irons4citations
  • 2023The Influence of Boron (B), Tin (Sn), Copper (Cu), and Manganese (Mn) on the Microstructure of Spheroidal Graphite Irons3citations
  • 2023Microstructural Characterization of Spheroidal Graphite Irons: A Study of the Effect of Preconditioning Treatment6citations

Places of action

Chart of shared publication
Michels, L.
2 / 3 shared
Arnberg, L.
1 / 6 shared
Brurok, R. B.
1 / 1 shared
Ott, E.
2 / 2 shared
Vines, L.
1 / 5 shared
Bugten, Andreas
2 / 2 shared
Sabatino, M. Di
2 / 2 shared
Li, Y.
1 / 95 shared
Sanders, P.
1 / 1 shared
Logan, R.
1 / 2 shared
Ribeiro, Cs
1 / 2 shared
Simes, S.
1 / 1 shared
Pires, A.
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Michels, L.
  • Arnberg, L.
  • Brurok, R. B.
  • Ott, E.
  • Vines, L.
  • Bugten, Andreas
  • Sabatino, M. Di
  • Li, Y.
  • Sanders, P.
  • Logan, R.
  • Ribeiro, Cs
  • Simes, S.
  • Pires, A.
OrganizationsLocationPeople

article

The Role of Boron in Low Copper Spheroidal Graphite Irons

  • Michels, L.
  • Arnberg, L.
  • Brurok, R. B.
  • Ott, E.
  • Hartung, C.
  • Vines, L.
  • Bugten, Andreas
  • Sabatino, M. Di
  • Li, Y.
Abstract

<jats:title>Abstract</jats:title><jats:p>The effects of boron at concentrations ranging from 5 to 525 ppm in low copper spheroidal graphite iron (SGI) has been studied. At 130 to 140 ppm, no particular effect of boron was observed on the size distributions, number densities, or morphologies of the microparticle populations in the material. Neither was there observed any effects on the size distributions or number densities of graphite nodules. However, boron was observed to lead to a rough surface morphology of the graphite nodules at concentrations as small as 24 ppm. Intercellular carbides were found to form in alloys containing more than 70 ppm boron. Additionally, the graphite shape began to degenerate in alloys with more than 300 ppm of boron. Mass spectrometry analyses revealed these carbides contain relatively high amounts of boron. In an alloy containing 74 ppm boron, it was inferred by using electron backscatter diffraction that these were of the type <jats:inline-formula><jats:alternatives><jats:tex-math>{{ {M}}_{23}({ {C}},{ {B}})_{6}}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>M</mml:mtext><mml:mn>23</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mtext>C</mml:mtext><mml:mo>,</mml:mo><mml:mtext>B</mml:mtext><mml:mo>)</mml:mo></mml:mrow><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> borocarbides, where M = Fe, Mn, V, or a combination of them. Mass spectrometry analyses also revealed elevated concentrations of boron in the surface layers of the graphite nodules.</jats:p>

Topics
  • morphology
  • surface
  • carbide
  • mass spectrometry
  • copper
  • Boron
  • iron
  • electron backscatter diffraction
  • spectrometry