Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Drewniak, A.

  • Google
  • 1
  • 5
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023High-temperature Corrosion of ~ 30 Pct Porous FeCr Stainless Steels in Air: Long-Term Evaluation Up to Breakaway6citations

Places of action

Chart of shared publication
Koszelow, D.
1 / 3 shared
Cempura, G.
1 / 15 shared
Makowska, Malgorzata
1 / 10 shared
Jasiński, P.
1 / 3 shared
Molin, S.
1 / 15 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Koszelow, D.
  • Cempura, G.
  • Makowska, Malgorzata
  • Jasiński, P.
  • Molin, S.
OrganizationsLocationPeople

article

High-temperature Corrosion of ~ 30 Pct Porous FeCr Stainless Steels in Air: Long-Term Evaluation Up to Breakaway

  • Koszelow, D.
  • Cempura, G.
  • Makowska, Malgorzata
  • Drewniak, A.
  • Jasiński, P.
  • Molin, S.
Abstract

<jats:title>Abstract</jats:title><jats:p>In this work, a long-term (up to 6000 hours) corrosion evaluation of three porous (~ 30 pct of initial porosity) ferritic iron-chromium alloys with different Cr contents (20, 22, and 27 wt pct of Cr) was carried out at 600 °C, 700 °C, 800 °C, and 900 °C in air. Mass gain measurements and SEM analyses revealed that at temperatures above 600 °C, all alloys exhibit breakaway corrosion, whereas at 600 °C, none of the alloys were heavily oxidized even after 6000 hours. Based on the results, the diffusion character of the corrosion of porous chromia-forming alloys was identified. The microstructure changes at high temperatures in porous alloys containing 22 wt pct of Cr were determined in detail by transmission electron microscopy. The proposed prediction model indicated that the lifetimes of the Fe20Cr and Fe22Cr alloys were determined as 1250 hours (± 535 hours) and 1460 hours (± 640 hours), respectively. It is in agreement with the long-term oxidation experiment. For the Fe27Cr alloy, the deviation between predicted and observed lifetimes occurs. The proposed model allows for qualitative estimation of the porous alloys’ lifetime with experimentally validated accuracy.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • stainless steel
  • corrosion
  • chromium
  • scanning electron microscopy
  • experiment
  • transmission electron microscopy
  • forming
  • iron
  • porosity
  • chromium alloy