Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tang, Y. T.

  • Google
  • 1
  • 6
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Deformation Mechanisms Rationalisation to Design for Creep Resistance in Polycrystalline Ni-Based Superalloys7citations

Places of action

Chart of shared publication
Mazanova, V.
1 / 2 shared
Mills, M. J.
1 / 9 shared
Egan, A.
1 / 2 shared
Reed, R. C.
1 / 15 shared
Gong, Y.
1 / 13 shared
Barba, D.
1 / 11 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Mazanova, V.
  • Mills, M. J.
  • Egan, A.
  • Reed, R. C.
  • Gong, Y.
  • Barba, D.
OrganizationsLocationPeople

article

Deformation Mechanisms Rationalisation to Design for Creep Resistance in Polycrystalline Ni-Based Superalloys

  • Mazanova, V.
  • Tang, Y. T.
  • Mills, M. J.
  • Egan, A.
  • Reed, R. C.
  • Gong, Y.
  • Barba, D.
Abstract

<jats:title>Abstract</jats:title><jats:p>Creep strength in polycrystalline Ni-based superalloys is influenced by the formation of a rich variety of planar faults forming within the strengthening <jats:inline-formula><jats:alternatives><jats:tex-math> '</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>γ</mml:mi><mml:mo>′</mml:mo></mml:msup></mml:math></jats:alternatives></jats:inline-formula> phase. The lengthening and thickening rate of these faults – and therefore the creep rate – depends on an intriguing combination of dislocation interactions at the <jats:inline-formula><jats:alternatives><jats:tex-math> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi></mml:math></jats:alternatives></jats:inline-formula>-<jats:inline-formula><jats:alternatives><jats:tex-math> '</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>γ</mml:mi><mml:mo>′</mml:mo></mml:msup></mml:math></jats:alternatives></jats:inline-formula> interface and diffusional processes of the alloying elements at the core of the fault tip. The effect of alloy composition on this process is not fully understood. In this work we use correlative high resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy to study the deformation faults in two different Ni-based superalloys with carefully designed ratios of disordering-to-ordering-promoting elements (Co-Cr against Nb-Ta-Ti). The results show that the additions of ordering-promoting elements reduce the diffusional processes required for the faults to lengthen and thicken thus reducing the creep rates found for the higher Nb-Ta-Ti alloy. These insights provide a path to follow in the design of improved grades of creep-resistant polycrystalline alloys beyond 700 <jats:inline-formula><jats:alternatives><jats:tex-math>^ </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow /><mml:mo>∘</mml:mo></mml:msup></mml:math></jats:alternatives></jats:inline-formula>C.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • strength
  • transmission electron microscopy
  • dislocation
  • forming
  • Energy-dispersive X-ray spectroscopy
  • deformation mechanism
  • creep
  • superalloy
  • alloy composition