People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Völkl, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Deformation Mechanisms in Compositionally Complex Polycrystalline CoNi-Base Superalloys: Influence of Temperature, Strain-Rate and Chemistry
Abstract
<jats:title>Abstract</jats:title><jats:p>Recent studies revealed the excellent high temperature properties of polycrystalline CoNi-base superalloys. However, their underlying deformation behavior has been reported only scarcely so far. In this work, the deformation mechanisms of four polycrystalline compositionally complex CoNi-base superalloys with slightly varying chemical compositions were investigated by compression and creep experiments at temperatures between 750 °C and 850 °C and strain-rates between 10<jats:sup>–3</jats:sup> and 10<jats:sup>–8</jats:sup> s<jats:sup>−1</jats:sup>. In the two (Ta + Ti)-rich alloys, a transition of the deformation mechanism from shearing by APB-coupled dislocation pairs to stacking fault shearing and finally also to microtwinning is observed with decreasing strain-rate and increasing temperature. In contrast, APB-based shearing mechanisms represent the dominant mechanism in both (Al + W)-rich alloys in all conditions. At high temperatures and low strain-rates, dislocation glide-climb processes also contribute to plastic deformation in all alloys. By correlating the underlying defect structures with the mechanical properties of these alloys, it becomes evident that a transition to stacking fault shearing and microtwinning leads to a lower strain-rate dependency and superior high-temperature strength in comparison with APB-based mechanisms. Reasons for the different deformation mechanisms, the influence of segregation processes, the consequences for mechanical properties and implications for a mechanism-based alloy design are discussed.</jats:p>