Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Łukaszczyk, A.

  • Google
  • 2
  • 9
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Development and Investigation of Mesoporous Bioactive Glass/Zein Coatings Electrodeposited on Titanium Alloy for Biomedical Applications13citations
  • 2023Influence of Mesoporous Bioactive Glass Particles Doped with Cu and Mg on the Microstructure and Properties of Zein-Based Coatings Obtained by Electrophoretic Deposition4citations

Places of action

Chart of shared publication
Dziadek, M.
2 / 2 shared
Cholewa-Kowalska, K.
2 / 4 shared
Moskalewicz, T.
2 / 8 shared
Maciąg, F.
2 / 2 shared
Hadzhieva, Zoya
1 / 10 shared
Boccaccini, A. R.
1 / 193 shared
Hadzhieva, Z.
1 / 1 shared
Boccaccini, Ar
1 / 302 shared
Dubiel, B.
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Dziadek, M.
  • Cholewa-Kowalska, K.
  • Moskalewicz, T.
  • Maciąg, F.
  • Hadzhieva, Zoya
  • Boccaccini, A. R.
  • Hadzhieva, Z.
  • Boccaccini, Ar
  • Dubiel, B.
OrganizationsLocationPeople

article

Development and Investigation of Mesoporous Bioactive Glass/Zein Coatings Electrodeposited on Titanium Alloy for Biomedical Applications

  • Łukaszczyk, A.
  • Dziadek, M.
  • Cholewa-Kowalska, K.
  • Moskalewicz, T.
  • Maciąg, F.
  • Hadzhieva, Zoya
  • Boccaccini, A. R.
Abstract

<jats:title>Abstract</jats:title><jats:p>The objective of the present work was the development of cathodic electrophoretic deposition (EPD) to obtain composite coatings of mesoporous sol–gel glass (MSGG) particles embedded in a zein matrix on Ti-13Nb-13Zr substrates. To deposit robust and repeatable coatings, a direct current EPD and pulsed direct current EPD as well as the deposition kinetics were investigated, including the deposition yield and deposition rate. The stability of the suspension was determined based on the zeta potential and conductivity. Macroscopically homogeneous coatings with a thickness of about 10 <jats:italic>µ</jats:italic>m and various volume fractions of MSGG were subjected to further examination. Coatings were uniform, exhibiting open porosity and showing excellent adhesion to the substrates. Both zein and MSGG particles revealed an amorphous structure. The coated substrates demonstrated greater resistance to electrochemical corrosion in Ringer's electrolyte in comparison with the virgin (non-coated) substrate. The coatings showed high roughness and moderate hydrophilicity. The incubation of the coated substrates in concentrated 1.5 simulated body fluid (1.5SBF) showed the formation of carbonate hydroxyapatite. The composite coatings showed improved antibacterial properties against gram-negative <jats:italic>E. coli</jats:italic> and gram-positive <jats:italic>S. aureus</jats:italic> bacteria compared to pure zein coatings. Electrophoretic MSGG/zein composite coatings should be further investigated in terms of their osteoconductive behavior, to confirm their suitability for medical applications in orthopedics.</jats:p>

Topics
  • Deposition
  • amorphous
  • corrosion
  • glass
  • glass
  • composite
  • titanium
  • titanium alloy
  • porosity