People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Świątnicki, Wiesław
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2021The Microstructure and Properties of Carbon Thin Films on Nanobainitic Steelcitations
- 2020CORROSION RESISTANCE OF THE NANOSTRUCTURED X37CrMoV5-1 STEELcitations
- 2017The comparative study of the microstructure and phase composition of nanoausferritic ductile iron alloy using SEM, TEM, magnetometer and X-ray diffraction methodscitations
- 2016The microstructure and phase composition of 35CrSiMn5-5-4 steel after quenching and partitioning heat treatmentcitations
- 2013The comparative study of phase composition of steels using X-ray diffraction and mössbauer spectroscopy methods
Places of action
Organizations | Location | People |
---|
article
The Microstructure and Properties of Carbon Thin Films on Nanobainitic Steel
Abstract
<jats:title>Abstract</jats:title><jats:p>The aim of this study was to assess whether it is possible to produce a high adhesive carbon coating by applying low-temperature RFCVD and glow discharge methods on nanobainitic X37CrMoV5-1 steel with and without nitrided sublayer. For this purpose, several methods of investigation were used: observations of coating morphology by scanning electron microscopy (SEM), analysis of bonds found in coatings (Raman spectroscopy), microhardness tests and adhesion of coatings (Scratch tests). Our research has shown that low-temperature RFCVD and glow discharge processes of nanobainitic X37CrMoV5-1 steel allow producing carbon coatings that can be described as hardened carbon coatings with very high hardness—> 2000 HV 0.25 in case of RFCVD processes and > 3300 HV 0.025 for glow discharge process and low friction coefficient—near 0.12 at 5 N load. However, the adhesion of produced coatings to the steel substrate strongly depends on the appropriate selection of the process parameters and on the proper preparation of the substrate before the deposition regarding the thermal stability of nanobainite.</jats:p>