People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Beentjes, Peter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Zn Diffusion and α-Fe(Zn) Layer Growth During Annealing of Zn-Coated B Steel
Abstract
<p>Direct hot press forming of Zn-coated 22MnB5 steels is impeded by micro-cracks that occur in the substrate due to the presence of Zn during the forming process. A study was therefore undertaken to quantify concentration of Zn across the α-Fe(Zn) coating and on grain boundaries in the α-Fe(Zn) layer and the underlying γ-Fe(Zn) substrate after isothermal annealing of Zn-coated 22MnB5 at 1173 K (900 °C) and to link the Zn distribution to the amount and type of micro-cracks observed in deformed samples. Finite difference model was developed to describe Zn diffusion and the growth of the α-Fe(Zn) layer. The penetration of Zn into the γ-Fe(Zn) substrate after 600 seconds annealing at 1173 K (900 °C) through bulk diffusion is estimated to be 3 μm, and the diffusion depth of Zn on the γ-Fe(Zn) grain boundaries is estimated to be 6 μm, which is significantly shorter than the maximum length (15 to 50 μm) of the micro-cracks formed in the severely stressed conditions, indicating that the Zn diffusion into the γ-Fe(Zn) from the α-Fe(Zn) during annealing is not correlated to the depth of micro-cracks. On the other hand, the maximum amount of Zn present in α-Fe(Zn) layer decreases with annealing time as the layer grows and Zn oxidizes, and the amount of Zn-enriched areas inside the α-Fe(Zn) layer is reduced leading to reduced length of cracking. Solid-Metal-Induced Embrittlement mechanism is proposed to explain the benefit of extended annealing on reduced depth of micro-crack penetration into the γ-Fe(Zn) substrate.</p><p>Publisher Statement: <b><i>The final publication is available at Springer via http://dx.doi.org/10.1007/s11661-015-3203-y</i></b></p><p><b><br/></b></p><p class="Default"><b><i> </i></b></p>