People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kivivuori, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Fast Salt Bath Heat Treatment for a Bainitic/Martensitic Low-Carbon Low-Alloyed Steel
Abstract
textcopyright 2015, The Minerals, MetalsMaterials Society and ASM International. The mechanical properties of a low-alloyed steel with 0.06 wt pct C were investigated after a series of heat treatment processes using salt bath followed by quenching into water in order to obtain bainitic/martensitic steel. Salt bath holding time varied from 30 to 330 seconds. Hardness, tensile properties and toughness have been examined. The results show the obtained microstructure significantly enhances the impact strength (up to 187 J) and toughness (up to 71.4 pct critical reduction) with good hardness (239 ± 4 HV) and tensile strength (720 to 800 MPa) compared to direct quenching heat treatment without salt bath holding.