Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sweet, Lisa

  • Google
  • 2
  • 7
  • 53

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2014The effect of trace levels of Ni and V on the microstructure and properties of four common aluminum alloys5citations
  • 2013Hot tear susceptibility of Al-Mg-Si alloys with varying iron contents48citations

Places of action

Chart of shared publication
Easton, Mark
2 / 9 shared
Grandfield, John
2 / 4 shared
Beer, Aiden
1 / 1 shared
Couper, Malcolm
1 / 1 shared
Davidson, Cameron
1 / 3 shared
Stjohn, David
1 / 4 shared
Taylor, John
1 / 12 shared
Chart of publication period
2014
2013

Co-Authors (by relevance)

  • Easton, Mark
  • Grandfield, John
  • Beer, Aiden
  • Couper, Malcolm
  • Davidson, Cameron
  • Stjohn, David
  • Taylor, John
OrganizationsLocationPeople

article

Hot tear susceptibility of Al-Mg-Si alloys with varying iron contents

  • Easton, Mark
  • Couper, Malcolm
  • Davidson, Cameron
  • Grandfield, John
  • Stjohn, David
  • Sweet, Lisa
  • Taylor, John
Abstract

Hot tear susceptibility in cast Al-0.52Si-0.34Mg-xFe 6060 aluminum alloys was investigated using a hot tearing test apparatus to simulate hot tearing in DC casting. The test apparatus has two cast bars, one that is used to measure the load response and one which is fixed at both ends to restrain thermal contraction so that hot tearing can be observed and rated where it occurred. The iron (Fe) content, ranging from 0.02 to 0.5 wt pct, was seen to have a major influence on the load response during solidification and the tear rating of these alloys. The findings are discussed in terms of Rappaz-Drezet-Gremaud (RDG) model sensitivity analysis and related to the effect of Fe content on the morphology and prevalence of the beta-Al5FeSi and alpha-AlFeSi intermetallic phases and their influence on the coherency and coalescence of the microstructure.

Topics
  • impedance spectroscopy
  • microstructure
  • morphology
  • phase
  • aluminium
  • casting
  • iron
  • intermetallic
  • susceptibility
  • solidification