Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wójcik, Tomasz

  • Google
  • 1
  • 2
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Hot Deformation of AA6082 Containing Fine Intermetallic Particles25citations

Places of action

Chart of shared publication
Sommitsch, Christof
1 / 71 shared
Poletti, Maria Cecilia
1 / 79 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Sommitsch, Christof
  • Poletti, Maria Cecilia
OrganizationsLocationPeople

article

Hot Deformation of AA6082 Containing Fine Intermetallic Particles

  • Wójcik, Tomasz
  • Sommitsch, Christof
  • Poletti, Maria Cecilia
Abstract

Hot deformation of AA6082 aluminum alloy was studied by compression tests carried out between 573 K and 823 K (300 °C and 550 °C) under a wide range of strain rates. Light optical and scanning electron microscopy were used to study the as-received microstructure, which consisted of elongated, partially recrystallized grains containing fine Mg2Si and AlFeMnSi particles. The hot-deformed material showed the effects of dynamic recovery, i.e., small low angle grain boundary formation and dislocation pinning by fine particles. The flow data were used to calculate the constitutive equations, obtaining high values of n exponent. This behavior was attributed to the interaction of particles with dislocations during hot deformation. Threshold stresses were introduced to adjust the constitutive equation to a n exponent value of 5 at high stresses and a value of 3 in the low stresses range, which was related to dislocations’ climbing and sliding and thus to dynamic recovery. The threshold values were related to the detachment stresses in close connection with the precipitation state which was a function of the deformation temperature.

Topics
  • grain
  • grain boundary
  • scanning electron microscopy
  • aluminium
  • dislocation
  • compression test
  • precipitation
  • intermetallic