Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dąbrowski, J. R.

  • Google
  • 1
  • 1
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Ti-Y2O3 Composites with Nanocrystalline and Microcrystalline Matrix5citations

Places of action

Chart of shared publication
Krasnowski, Marek
1 / 9 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Krasnowski, Marek
OrganizationsLocationPeople

article

Ti-Y2O3 Composites with Nanocrystalline and Microcrystalline Matrix

  • Dąbrowski, J. R.
  • Krasnowski, Marek
Abstract

Mechanical milling of a Ti-2 pct Y2O3 powders mixture led to the synthesizing of a composite powder with a nanocrystalline Ti matrix having a mean crystallite size of 19 nm. Both the nanocomposite powder prepared through milling and the initial mixture of powders were consolidated by hot pressing under the pressure of 7.7 GPa at the temperature of 1273 K (1000 °C). The transmission electron microscopy (TEM) investigations of the bulk sample produced from milled powder revealed that Y2O3 equiaxial particles of less than 30 nm in size are distributed uniformly in the Ti matrix with a grain size in the wide range from 50 nm to 200 nm. The microhardness of the produced nanocrystalline material is 655 HV0.2, and it significantly exceeds the hardness of the microcrystalline material (the consolidated initial mixture of powders), which is equal to 273 HV0.2. This finding confirms that reducing the grain size to the nanometric level can have a beneficial influence on the hardness of titanium alloys. Dispersion hardening also contributes to the hardness increase.

Topics
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • grain
  • grain size
  • grinding
  • laser emission spectroscopy
  • milling
  • hardness
  • transmission electron microscopy
  • titanium
  • titanium alloy
  • hot pressing