Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Swindeman, Robert W.

  • Google
  • 1
  • 3
  • 178

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008MICROSTRUCTURE OF LONG-TERM AGED IN617 NI-BASE SUPERALLOY178citations

Places of action

Chart of shared publication
Shingledecker, John P.
1 / 27 shared
Vasudevan, Vijay
1 / 2 shared
Wu, Quanyan
1 / 1 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Shingledecker, John P.
  • Vasudevan, Vijay
  • Wu, Quanyan
OrganizationsLocationPeople

article

MICROSTRUCTURE OF LONG-TERM AGED IN617 NI-BASE SUPERALLOY

  • Shingledecker, John P.
  • Vasudevan, Vijay
  • Swindeman, Robert W.
  • Wu, Quanyan
Abstract

The microstructure of the Ni-base superalloy IN617 that had undergone prolonged aging (approximately 65,000 hours) at a series of temperatures from 482 C to 871 C has been characterized by microhardness measurements, optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Cr23C6, Mo-rich eta-M6C, and Ti(C,N) constitute the major primary coarse precipitates both within the grains and along the grain boundaries. The secondary carbides were mostly fine Cr23C6, which had a cube-on-cube orientation relationship (OR) with the fcc matrix, and at long times were present in cuboidal and plate-shape forms within the grains and as films along the grain boundaries. Fine, eta-M6C carbides were also observed at low to intermediate temperatures with an OR given by [011] carbide//[011] matrix, carbide// matrix. The coarse eta-M6C carbides increased in extent at 871 C, whereas the counterpart fine carbides were absent. The phase was found to be present at all aging temperatures up to 871 C, with a volume fraction ranging from very low to approximately 5 pct at 593 C, where the peak in microhardness occurs. The observations have also suggested that the presence of a very small amount of at temperatures as high as 871 C at long times may be associated with a reaction between the fine eta-carbides and the matrix. Ultrafine precipitates of the intermetallic phase Ni2(Cr,Mo) with the Pt2Mo-type structure was observed in addition to in samples aged for 28,300 hours at the lowest aging temperature of 482 C. These precipitates were absent in samples aged at higher temperatures. The various observations made have suggested that the long-term thermal stability of the IN617 alloy is reasonably good over a wide temperature range of 538 C to 704 C, whereas at higher temperatures (871 C), the substantial decrease in the volume fraction of and coarsening and clustering of the carbides lead to a large drop in the microhardness. A modified time-temperature-transformation (TTT) diagram was constructed based on the results of this study and comparison with previous reports.

Topics
  • impedance spectroscopy
  • grain
  • phase
  • scanning electron microscopy
  • carbide
  • transmission electron microscopy
  • precipitate
  • aging
  • intermetallic
  • optical microscopy
  • clustering
  • superalloy
  • aging