Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

González-Suárez, A.

  • Google
  • 1
  • 5
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021A feasibility study on microwave imaging of bone for osteoporosis monitoring.20citations

Places of action

Chart of shared publication
Ohalloran, M.
1 / 2 shared
Shahzad, Atif
1 / 3 shared
Ma, Elahi
1 / 1 shared
Amin, Dr. Bilal
1 / 1 shared
Crocco, L.
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Ohalloran, M.
  • Shahzad, Atif
  • Ma, Elahi
  • Amin, Dr. Bilal
  • Crocco, L.
OrganizationsLocationPeople

article

A feasibility study on microwave imaging of bone for osteoporosis monitoring.

  • González-Suárez, A.
  • Ohalloran, M.
  • Shahzad, Atif
  • Ma, Elahi
  • Amin, Dr. Bilal
  • Crocco, L.
Abstract

The dielectric properties of bones are found to be influenced by the demineralisation of bones. Therefore, microwave imaging (MWI) can be used to monitor in vivo dielectric properties of human bones and hence aid in the monitoring of osteoporosis. This paper presents the feasibility analysis of the MWI device for monitoring osteoporosis. Firstly, the dielectric properties of tissues present in the human heel are analysed. Secondly, a transmission line (TL) formalism approach is adopted to examine the feasible frequency band and the matching medium for MWI of trabecular bone. Finally, simplified numerical modelling of the human heel was set to monitor the penetration of E-field, the received signal strength, and the power loss in a numerical model of the human heel. Based on the TL formalism approach, 0.6-1.9-GHz frequency band is found to feasible for bone imaging purpose. The relative permittivity of the matching medium can be chosen between 15 and 40. The average percentage difference between the received signal for feasible and inconvenient frequency band was found to be 82%. The findings based on the dielectric contrast of tissues in the heel, the feasible frequency band, and the finite difference time domain simulations support the development of an MWI prototype for monitoring osteoporosis.

Topics
  • impedance spectroscopy
  • simulation
  • dielectric constant
  • strength