Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vardy, Mark E.

  • Google
  • 1
  • 2
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Recovering shear stiffness degradation curves from classification data with a neural network approach5citations

Places of action

Chart of shared publication
Gourvenec, Susan
1 / 3 shared
Charles, Jared
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Gourvenec, Susan
  • Charles, Jared
OrganizationsLocationPeople

article

Recovering shear stiffness degradation curves from classification data with a neural network approach

  • Gourvenec, Susan
  • Charles, Jared
  • Vardy, Mark E.
Abstract

Shear stiffness is critical in assessing the stress–strain response of geotechnical infrastructure, and is a complex, nonlinear parameter. Existing methods characterise stiffness degradation as a function of strain and require either bespoke laboratory element tests, or adoption of a curve fitting approach, based on an existing data set of laboratory element tests. If practitioners lack the required soil classification parameters, they are unable to use these curve fitting functions. Within this study, we examine the ability and versatility of an artificial neural network (ANN), in this case a feedforward multilayer perceptron, to predict strain-based stiffness degradation on the data set of element test results and soil classification data that underpins current curve fitting functions. It is shown that the ANN gives similar or better results to the existing curve fitting method when the same parameters are used, but also that the ANN approach enables curves to be recovered with ‘any’ subset of the considered soil classification parameters, providing practitioners with a great versatility to derive a stiffness degradation curve. A user-friendly and freely available graphical calculation app that implements the proposed methodology is also presented.

Topics
  • impedance spectroscopy