Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Obuekwe, Ifeyinwa S.

  • Google
  • 4
  • 1
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2013Impact of Al and Fe on the development of phenanthrene catabolism in soil9citations
  • 2013Impact of zinc-copper mixtures on the development of phenanthrene catabolism in soil12citations
  • 2013Impact of Zn, Cu, Al and Fe on the partitioning and bioaccessibility of (14)C-phenanthrene in soil17citations
  • 2013Impact of Zn and Cu on the development of phenanthrene catabolism in soil9citations

Places of action

Chart of shared publication
Semple, Kirk
4 / 8 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Semple, Kirk
OrganizationsLocationPeople

article

Impact of Al and Fe on the development of phenanthrene catabolism in soil

  • Semple, Kirk
  • Obuekwe, Ifeyinwa S.
Abstract

<p>Heavy metals often occur as co-contaminants with polycyclic aromatic hydrocarbons (PAHs) and reportedly have adverse effects on biodegradation. In this study, the development of C-14-phenanthrene mineralisation in soil co-contaminated with aged or freshly added Al or Fe amendment was assessed.</p><p>C-14-phenanthrene mineralisation was assessed using respirometry; respirometers incorporated a Teflon-lined screw-capped CO2 trap containing 1-M NaOH within a glass scintillation vial. The production of (CO2)-C-14 was assessed by the addition of Ultima Gold liquid scintillation fluid to the CO2 traps and subsequent liquid scintillation counting. Enumeration of phenanthrene-degrading bacteria was achieved by counting the colony forming unit count using the spread plate method.</p><p>This investigation considered the effects of Al and Fe (50, 100, 250 and 500 mg/kg) on C-14-phenanthrene biodegradation in soil over 63-day contact time. Fresh Al amendments at lower concentrations (50 and 100 mg/kg) stimulated phenanthrene catabolism (p &lt;0.05) at t = 21 and 42 days which may reflect an 'Arndt-Schulz' effect, but phenanthrene catabolism was significantly reduced (p &lt;0.05) in 500 mg/kg aged Al this could be due to Al toxicity to phenanthrene degraders. Phenanthrene mineralisation was stimulated in the highest Fe concentration (500 mg/kg) in aged and fresh Fe amendments at t = 21 days. This could be because Fe is an essential requirement for microbial growth.</p><p>The impact of Al or Fe on the catabolism of C-14-phenanthrene was dependent on incubation time and Al was more toxic than Fe to soil PAH catabolic activity. This could be because Al is a non-essential microbial requirement. Bioremediation of soils co-contaminated with PAH and heavy metal is a complex problem; therefore, studies on the impact of metals on PAHs biodegradation highlight the risks and biodegradation potential in contaminated soil.</p>

Topics
  • impedance spectroscopy
  • glass
  • glass
  • gold
  • forming
  • toxicity