Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marengo, Luca

  • Google
  • 1
  • 5
  • 44

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Environmental impact of traction electric motors for electric vehicles applications44citations

Places of action

Chart of shared publication
Hegazy, Omar
1 / 3 shared
Van Mierlo, Joeri
1 / 16 shared
Winter, Oliver
1 / 1 shared
Rivas, Maria Hernandez
1 / 1 shared
Messagie, Maarten
1 / 8 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Hegazy, Omar
  • Van Mierlo, Joeri
  • Winter, Oliver
  • Rivas, Maria Hernandez
  • Messagie, Maarten
OrganizationsLocationPeople

article

Environmental impact of traction electric motors for electric vehicles applications

  • Hegazy, Omar
  • Van Mierlo, Joeri
  • Marengo, Luca
  • Winter, Oliver
  • Rivas, Maria Hernandez
  • Messagie, Maarten
Abstract

<p>Purpose: The expansion of the electric vehicle (EV) market will bring changes in the type of environmental impact generated by the transport sector. This will be partially associated to the introduction of new technologies for energy storage and powertrains, including electric motors technology, which can play a critical role for the EV. To assure its optimal performance, key components and innovative materials are integrated in current motor designs. Such is the case of permanent magnets (PM), commonly made of rare-earth elements, which have a history of ecological concerns related to its mining. The goal of the paper is to study novel traction e-motors and to assess the influence of its components, in the environmental performance of the motor and the electric vehicle. Methods: In this study, a life cycle assessment (LCA) is performed, including the manufacturing, use, and end of life stages of a traction electric motor for EV applications. A comparison is presented, where the rare-earth magnets are replaced by ferrite magnets, under several efficiency scenarios. Average European conditions are considered for framing the modeling. A functional unit of 1 km driven by the vehicle is used. Results and discussion: Twelve impact categories were selected to present the potential environmental impact of the motors. Energy consumption during the use stage was identified as a hotspot responsible for an important share of the impact. The amount of energy consumed is highly dependent on the efficiencies of the powertrain, which is why improving efficiency should be regarded as crucial for decreasing the environmental damage produced by the motor. The use of rare-earth magnets during manufacturing does not represent a significant share of the impact, as they only take 2 % of the total mass. Other components, including laminations, housing and windings were instead recognized as more significant than the mangets, mainly for climate change, toxicity of humans, soil and water bodies, as well as metal depletion. The use of alternative materials for rare-earth magnets can contribute in the reduction of the potential impact, as long as the overall efficiency of the motor remains the same or increases. Conclusions: Based on the study results, it can be concluded that the environmental performance of traction motor is closely tight to its efficiency. Selection of materials during design should focus more on preserving or improving the efficiency of the motor, than on materials with low environmental impact during production.</p>

Topics
  • impedance spectroscopy
  • toxicity