Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bahraq, Ashraf A.

  • Google
  • 2
  • 8
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Evaluating long-term durability of nanosilica-enhanced alkali-activated concrete in sulfate environments towards sustainable concrete development6citations
  • 2022Engineered and green natural pozzolan-nano silica-based alkali-activated concrete13citations

Places of action

Chart of shared publication
Salami, Babatunde Abiodun
2 / 25 shared
Adewumi, Adeshina Adewale
1 / 1 shared
Khallaf, Zaid
1 / 1 shared
Ibrahim, Mohammed
2 / 7 shared
Al-Osta, Mohammed A.
1 / 2 shared
Nasir, Muhammad
1 / 7 shared
Ali, Mohammed Rizwan
1 / 1 shared
Wasiu, Alimi
1 / 1 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Salami, Babatunde Abiodun
  • Adewumi, Adeshina Adewale
  • Khallaf, Zaid
  • Ibrahim, Mohammed
  • Al-Osta, Mohammed A.
  • Nasir, Muhammad
  • Ali, Mohammed Rizwan
  • Wasiu, Alimi
OrganizationsLocationPeople

article

Engineered and green natural pozzolan-nano silica-based alkali-activated concrete

  • Salami, Babatunde Abiodun
  • Al-Osta, Mohammed A.
  • Bahraq, Ashraf A.
  • Nasir, Muhammad
  • Ali, Mohammed Rizwan
  • Ibrahim, Mohammed
  • Wasiu, Alimi
Abstract

<p>Alkali-activated concrete (AAC) or binders (AABs) have emerged as a substitute to conventional ordinary Portland cement (OPC)–based concrete owing to their techno-ecological merits. Saudi Arabia has vast resources of natural pozzolan whose impact on some fresh and hardened properties was encouraging; however, the long-term shrinkage behavior of AABs and life cycle assessment (LCA) of the developed product is yet to be explored. Therefore, this study evaluates shrinkage characteristics and LCA of Saudi natural pozzolan (NP)–based AAC. The synergistic impact of admixing nano-silica (NS) up to 7.5% dosage was also observed on the properties of engineered AABs in comparison with OPC-based concrete. The shrinkage properties were correlated with the microstructure and pore structure. The study revealed that the shrinkage properties of both NP-based AABs and OPC-based concrete are comparable. However, adding NS increased the drying shrinkage strain because of the finer pore structure than AABs without NS, which was confirmed through nuclear magnetic resonance (NMR). The maximum average drying shrinkage strain of 510 με was recorded in the OPC concrete, whereas in the engineered AAC with 0, 1, 2.5, 5, and 7.5% NS, it was 486, 537, 568, 601, and 651 με, respectively. It is postulated that the NP can be beneficially valorized in the production of green AABs without compromising the shrinkage characteristics, while the NS is favorable for enhancing the strength and refinement of the pore matrix. Besides, the LCA indicated the feasibility of recycling the high volume of natural waste by AAB technology, which significantly lowers the carbon footprints and minimizes the environmental implications in infrastructural applications.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • pore
  • Carbon
  • strength
  • cement
  • Nuclear Magnetic Resonance spectroscopy
  • drying