Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rahim, Mustaqqim Abd

  • Google
  • 1
  • 5
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Mechanical properties of coconut shell-based concrete: experimental and optimisation modelling11citations

Places of action

Chart of shared publication
Zuki, Sharifah Salwa Mohd
1 / 7 shared
Algaifi, Hassan Amer
1 / 6 shared
Shahidan, Shahiron
1 / 7 shared
Ibrahim, Mohd Haziman Wan
1 / 20 shared
Huseien, Ghasan Fahim
1 / 6 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Zuki, Sharifah Salwa Mohd
  • Algaifi, Hassan Amer
  • Shahidan, Shahiron
  • Ibrahim, Mohd Haziman Wan
  • Huseien, Ghasan Fahim
OrganizationsLocationPeople

article

Mechanical properties of coconut shell-based concrete: experimental and optimisation modelling

  • Rahim, Mustaqqim Abd
  • Zuki, Sharifah Salwa Mohd
  • Algaifi, Hassan Amer
  • Shahidan, Shahiron
  • Ibrahim, Mohd Haziman Wan
  • Huseien, Ghasan Fahim
Abstract

Excessive accumulation of waste materials has presented a serious environmental problem on a global scale. This has prompted many researchers to utilise agricultural, industrial, and by-product waste materials as the replacement of aggregate in the concrete matrix. In this present study, the prediction and optimisation of coconut shell (CA) content as the replacement of fine aggregate were evaluated based on the mechanical properties of the concrete (M30). Based on the suggested design array from the response surface methodology (RSM) model, experimental tests were carried out to achieve the goal of this study. The collected data was used to develop mathematical predictive equations using both GEP and RSM models. Analysis of variance (ANOVA) was also taken into account to appraise and verify the performance of the proposed models. Based on the results, the optimum content of replacing CA was 50%. In particular, the compressive, tensile, and flexural strength obtained after 28 days of curing were 46.2, 3.74, and 8.06 MPa, respectively, from the RSM model and 46.18, 3.85, and 7.99 MPa, respectively, from the GEP model. The obtained values were superior to those of the control concrete sample (43.12, 3.51 and 7.14 MPa, respectively). Beyond the optimum content, a loss in strength was observed. It was also found that both the GEP and RSM models exhibited high prediction accuracy with strong correlations (R2 = 0.97 and 0.95, respectively). In addition, minimum prediction error (RMSE < 0.945 (RSM), RMSE < 1.62 (GEP)) was achieved, indicating that both models were robust and reliable for further prediction. It was concluded that CA could serve as an excellent strategic material to address several serious environmental issues.

Topics
  • surface
  • strength
  • flexural strength
  • curing