Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Geczo, Alexandra

  • Google
  • 1
  • 5
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Mechanistic insights into acetaminophen removal on cashew nut shell biomass-derived activated carbons39citations

Places of action

Chart of shared publication
Bashkova, Svetlana
1 / 1 shared
Rodríguez-Aguado, Elena
1 / 2 shared
Elshaer, Mohammed R.
1 / 1 shared
Giannakoudakis, Dimitrios
1 / 1 shared
Triantafyllidis, Konstantinos S.
1 / 10 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Bashkova, Svetlana
  • Rodríguez-Aguado, Elena
  • Elshaer, Mohammed R.
  • Giannakoudakis, Dimitrios
  • Triantafyllidis, Konstantinos S.
OrganizationsLocationPeople

article

Mechanistic insights into acetaminophen removal on cashew nut shell biomass-derived activated carbons

  • Bashkova, Svetlana
  • Geczo, Alexandra
  • Rodríguez-Aguado, Elena
  • Elshaer, Mohammed R.
  • Giannakoudakis, Dimitrios
  • Triantafyllidis, Konstantinos S.
Abstract

Activated carbons prepared from cashew nut shells by chemical activation with phosphoric acid were tested for the removal of acetaminophen. It was found that an increase in carbonization temperature resulted in increased pore volume and decreased amount of surface functional groups. Potentiometric titration analysis indicated that the majority of surface groups on carbons are acidic. Detailed surface characterization by FT-IR, XPS, and thermal analyses indicated the involvement of surface functional groups in the removal of acetaminophen either via hydrogen bonding or by acid hydrolysis. The carbon obtained at 600 °C, which contains high amount of carboxylic groups and high pore volume, exhibited the highest adsorption capacity. For this carbon, the removal of acetaminophen took place mostly via acid hydrolysis with the formation of p-aminophenol and acetic acid adsorbed on the surface. Carbon obtained at 400 °C was found to have the highest density of acidic functional groups, which resulted in dimerization reactions and pore blockage. No direct correlation was observed between the adsorption capacities of carbons and their textural or surface characteristics. This suggests the complexity of acetaminophen removal by the cashew nut shell-derived activated carbons, governed by their surface chemistry and supported by high surface area accessible via micro/mesopores.

Topics
  • density
  • pore
  • surface
  • Carbon
  • x-ray photoelectron spectroscopy
  • Hydrogen
  • activation
  • titration