Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rikhvanov, Leonid

  • Google
  • 1
  • 6
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Towards integrating toxicity characterization into environmental studies: Case study of bromine in soils18citations

Places of action

Chart of shared publication
Fantke, Peter
1 / 1 shared
Baranovskaya, Natalia
1 / 1 shared
Bratec, Tatiana
1 / 1 shared
Müller, Nienke
1 / 1 shared
Jolliet, Olivier
1 / 3 shared
Laratte, Bertrand
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Fantke, Peter
  • Baranovskaya, Natalia
  • Bratec, Tatiana
  • Müller, Nienke
  • Jolliet, Olivier
  • Laratte, Bertrand
OrganizationsLocationPeople

article

Towards integrating toxicity characterization into environmental studies: Case study of bromine in soils

  • Rikhvanov, Leonid
  • Fantke, Peter
  • Baranovskaya, Natalia
  • Bratec, Tatiana
  • Müller, Nienke
  • Jolliet, Olivier
  • Laratte, Bertrand
Abstract

Pollution from bromine and some of its related compounds is currently unregulated in soil from Russia and other countries, and tools for sound assessment of environmental impacts of bromine contamination are largely missing. Hence, assessing potential implications for humans and ecosystems of bromine soil contamination is urgently needed, which requires the combination of measured soil concentrations from environmental studies and quantified potential toxicity impacts. To address this need, we used data from an experimental study assessing bromine in soils (384 samples) of Tomsk oblast, Russia, starting from measured concentrations obtained by Instrumental Neutron Activation Analysis in an earlier study. From these data, we calculated the bromine mass in soils and used these as starting point to characterize related cumulative impacts on human health and ecosystems in the Tomsk region, using a global scientific consensus model for screening-level comparative toxicity characterization of chemical emissions. Results show that the combination of sampling methodology with toxicity characterization techniques presents a new approach to be used in environmental studies aimed at environmental assessment and analysis of a territory. Our results indicate that it is important to account for substance-specific chemical reaction pathways and transfer processes, as well as to consider region-specific environmental characteristics. Our approach will help complement environmental assessment results with environmental sustainability elements, to consider potential tradeoffs in impacts, related to soil pollution, in support of improved emission and pollution reduction strategies.

Topics
  • impedance spectroscopy
  • compound
  • activation
  • toxicity
  • neutron activation analysis