Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Meo, Marie

  • Google
  • 1
  • 5
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Quantification of human adenovirus and norovirus in river water in the north-east of France42citations

Places of action

Chart of shared publication
Sedji, Maryse Iris
1 / 1 shared
Varbanov, Mihayl
1 / 1 shared
Colin, Marius
1 / 2 shared
Bertrand, Isabelle
1 / 1 shared
Mathieu, Laurence
1 / 3 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Sedji, Maryse Iris
  • Varbanov, Mihayl
  • Colin, Marius
  • Bertrand, Isabelle
  • Mathieu, Laurence
OrganizationsLocationPeople

article

Quantification of human adenovirus and norovirus in river water in the north-east of France

  • Sedji, Maryse Iris
  • Varbanov, Mihayl
  • Colin, Marius
  • Bertrand, Isabelle
  • Meo, Marie
  • Mathieu, Laurence
Abstract

Human adenoviruses (HAdVs) are a major cause of infection and have been proposed as viral indicators of water quality. Human noroviruses (NoV) are the main cause of viral acute gastroenteritis. Quantitative data on the environmental prevalence of both viruses are needed. The genomes of HAdVs, enteric adenovirus type 41 (HAdV41) and noroviruses of genogroups I and II (NoV GGI and GGII) were quantified over a six-month period in a river located in northeastern France. The samples were collected downstream from the discharge of a wastewater treatment plant. The viruses were concentrated using a glass wool method and the viral genomes were quantified using digital droplet PCR (ddPCR). All river water samples (15/15) were positive for the genomes of HAdVs, HAdV41, NoV GGI and NoV GGII. Concentrations of HAdVs, HAdV41 and NoV GII genomes were similar and HAdV41 represented ~80% of HAdVs. Infectious HAdVs were quantified in these samples using an integrated cell culture-quantitative PCR method (ICC-qPCR); they were detected in 93% (14/15) and quantified in 53% (8/15) of the samples. Thus, infectious HAdVs represented 0.3% to 12.2% of total HAdV particles detected by ddPCR. Infectious HAdV41 particles were found in 73% (11/15) of the samples. This common presence of pathogenic enteric viruses underlines the impact of wastewater discharge on quality of surface waters and may constitute a threat for human health. The relative abundance of genome of HAdV41 underlines the need for studies focusing on the specific detection of its infectious forms along water cycle.

Topics
  • surface
  • glass
  • glass