Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Monclús, Ma

  • Google
  • 1
  • 3
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015High temperature nanoindentation response of RTM6 epoxy resin at different strain rates19citations

Places of action

Chart of shared publication
Frontini, P.
1 / 5 shared
Lotfian, Saeid
1 / 22 shared
Molina-Aldareguia, Jm
1 / 2 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Frontini, P.
  • Lotfian, Saeid
  • Molina-Aldareguia, Jm
OrganizationsLocationPeople

article

High temperature nanoindentation response of RTM6 epoxy resin at different strain rates

  • Frontini, P.
  • Lotfian, Saeid
  • Molina-Aldareguia, Jm
  • Monclús, Ma
Abstract

This paper explores the feasibility of characterizing the mechanical response of the commercial aerospace grade epoxy resin RTM6 by nanoindentation tests at varying temperatures and strain rates. Since glassy polymers exhibit time-dependent mechanical properties, a dynamic nanoindentation technique was used. This method consists on superimposing a small sinusoidal force oscillation on the applied force. Viscoelastic properties are then characterized by their storage and loss moduli, whereas the visco-plastic response of the material can be associated to its hardness. In such experiments, thermal stability of the measuring technique is critical to achieve a low thermal drift and it becomes increasingly important as the measuring temperature increases. Our results show that conventional methods applied for drift correction in nanoindentation of inorganic materials are not applicable to glassy polymers leading to physically inconsistent results. We propose a method for drift correction based on the hypothesis that viscoelastic modulus should be a function of the applied load and frequency but independent of the global strain rate. Using this method, it was possible to determine the viscoplastic properties of RTM6 between RT and 200 °C.

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • hardness
  • nanoindentation
  • resin