Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Talaia, Pm

  • Google
  • 1
  • 8
  • 32

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2007Plated and intact femur strains in fracture fixation using fiber Bragg gratings and strain gauges32citations

Places of action

Chart of shared publication
Claramunt, R.
1 / 1 shared
Abe, I.
1 / 4 shared
Schiller, Mw
1 / 3 shared
Lopes, P.
1 / 1 shared
Nogueira, Rn
1 / 6 shared
Simoes, Ja
1 / 3 shared
Ramos, A.
1 / 11 shared
Pinto, Jl
1 / 6 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Claramunt, R.
  • Abe, I.
  • Schiller, Mw
  • Lopes, P.
  • Nogueira, Rn
  • Simoes, Ja
  • Ramos, A.
  • Pinto, Jl
OrganizationsLocationPeople

article

Plated and intact femur strains in fracture fixation using fiber Bragg gratings and strain gauges

  • Claramunt, R.
  • Abe, I.
  • Schiller, Mw
  • Lopes, P.
  • Nogueira, Rn
  • Talaia, Pm
  • Simoes, Ja
  • Ramos, A.
  • Pinto, Jl
Abstract

This paper presents an experimental methodology to determine plated and intact femur strains using fiber Bragg gratings and strain gauges. A plated and an intact synthetic femur were used and loaded under a simplistic static load of 600 N. A stainless steel (316L) plate was used to fixate a simulated 45 degrees fracture on one femur. Strains were recoded at the same sites on both femurs. Strain shielding is shown to be more pronounced at the distal region of the plated femur. The experimental methodology based on fiber Bragg grating sensors is a novel approach to assess bone plate strains, which could also be used to obtain biologic tissue and implant surface strains in locations where conventional strain gauge use is not technically feasible.

Topics
  • impedance spectroscopy
  • surface
  • stainless steel