Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rattray, Nicholas

  • Google
  • 1
  • 8
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Metabolic analysis of the response of Pseudomonas putida DOT-T1E strains to toluene using Fourier transform infrared spectroscopy and gas chromatography mass spectrometry10citations

Places of action

Chart of shared publication
Almasoud, Nagla
1 / 1 shared
Muhamadali, Howbeer
1 / 1 shared
Trivedi, Drupad
1 / 1 shared
Sayqal, Ali
1 / 2 shared
Xu, Yun
1 / 3 shared
Ellis, David
1 / 5 shared
Goodacre, Royston
1 / 9 shared
Webb, Carole
1 / 1 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Almasoud, Nagla
  • Muhamadali, Howbeer
  • Trivedi, Drupad
  • Sayqal, Ali
  • Xu, Yun
  • Ellis, David
  • Goodacre, Royston
  • Webb, Carole
OrganizationsLocationPeople

article

Metabolic analysis of the response of Pseudomonas putida DOT-T1E strains to toluene using Fourier transform infrared spectroscopy and gas chromatography mass spectrometry

  • Almasoud, Nagla
  • Rattray, Nicholas
  • Muhamadali, Howbeer
  • Trivedi, Drupad
  • Sayqal, Ali
  • Xu, Yun
  • Ellis, David
  • Goodacre, Royston
  • Webb, Carole
Abstract

Introduction<br/><br/>An exceptionally interesting stress response of Pseudomonas putida strains to toxic substances is the induction of efflux pumps that remove toxic chemical substances from the bacterial cell out to the external environment. To exploit these microorganisms to their full potential a deeper understanding of the interactions between the bacteria and organic solvents is required. Thus, this study focuses on investigation of metabolic changes in P. putida upon exposure to toluene.<br/><br/>Objective<br/><br/>Investigate observable metabolic alterations during interactions of three strains of P. putida (DOT-T1E, and its mutants DOT-T1E-PS28 and DOT-T1E-18) with the aromatic hydrocarbon toluene.<br/><br/>Methods<br/><br/>The growth profiles were measured by taking optical density (OD) measurement at 660 nm (OD660) at various time points during incubation. For fingerprinting analysis, Fourier-transform infrared (FT-IR) spectroscopy was used to investigate any phenotypic changes resulting from exposure to toluene. Metabolic profiling analysis was performed using gas chromatography-mass spectrometry (GC–MS). Principal component—discriminant function analysis (PC-DFA) was applied to the FT-IR data while multiblock principal component analysis (MB-PCA) and N-way analysis of variance (N-way ANOVA) were applied to the GC–MS data.<br/><br/>Results<br/><br/>The growth profiles demonstrated the effect of toluene on bacterial cultures and the results suggest that the mutant P. putida DOT-T1E−18 was more sensitive (significantly affected) to toluene compared to the other two strains. PC-DFA on FT-IR data demonstrated the differentiation between different conditions of toluene on bacterial cells, which indicated phenotypic changes associated with the presence of the solvent within the cell. Fifteen metabolites associated with this phenotypic change, in P. putida due to exposure to solvent, were from central metabolic pathways. Investigation of MB-PCA loading plots and N-way ANOVA for condition | strain × time blocking (dosage of toluene) suggested ornithine as the most significant compound that increased upon solvent exposure.<br/><br/>Conclusion<br/><br/>The combination of metabolic fingerprinting and profiling with suitable multivariate analysis revealed some interesting leads for understanding the mechanism of Pseudomonas strains response to organic solvent exposure.

Topics
  • density
  • impedance spectroscopy
  • compound
  • gas chromatography
  • Fourier transform infrared spectroscopy
  • spectrometry
  • gas chromatography-mass spectrometry