Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fuglsig, João Marcus De Carvalho E. Silva

  • Google
  • 1
  • 4
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Magnetic resonance imaging artefacts caused by orthodontic appliances and/or implant-supported prosthesis5citations

Places of action

Chart of shared publication
Spin-Neto, Rubens
1 / 4 shared
Wenzel, Ann
1 / 1 shared
Hansen, Brian
1 / 1 shared
Johannsen, Katrine Mølgaard
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Spin-Neto, Rubens
  • Wenzel, Ann
  • Hansen, Brian
  • Johannsen, Katrine Mølgaard
OrganizationsLocationPeople

article

Magnetic resonance imaging artefacts caused by orthodontic appliances and/or implant-supported prosthesis

  • Spin-Neto, Rubens
  • Wenzel, Ann
  • Hansen, Brian
  • Fuglsig, João Marcus De Carvalho E. Silva
  • Johannsen, Katrine Mølgaard
Abstract

<p>Objectives: Dental materials, including orthodontic appliances and implants, are commonly mentioned as a possible source of artefacts in magnetic resonance imaging (MRI). The aim of the present study was to undertake a systematic review of the relevant literature on MR image artefacts due to dental materials, limited to orthodontic appliances and implant-supported dental prosthesis, on both technical and diagnostic levels. Methods: The MEDLINE (PubMed) bibliographic database was searched up to September 2020. The search was limited to studies published in English, using the search string: (MRI or magnetic resonance) and (artefact or artifact) and (dental or ortho or implant or restoration or restorative). The studies were assessed independently by three reviewers, focusing on the following parameters: MRI sequences, tested materials, assessed parameters, efficacy level and outcome. Results: The search strategy yielded 31 studies, which were included in this systematic review. These studies showed that metallic dental materials, commonly present in orthodontic appliances and implant-supported dental prosthesis led to diverse types/severities of artefacts in MR images. Fifteen studies were in vivo, based on human subjects. The studies differed substantially in terms of tested materials, assessed parameters, and outcome measurements. Conclusions: Metallic dental materials cause artefacts of diverse types and severities in MR images of the head and neck region. However, the diagnostic relevance of the investigated artefacts for the diverse MRI applications is yet to be studied.</p>

Topics
  • impedance spectroscopy