Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stachowiak, Gwidon W.

  • Google
  • 1
  • 5
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Characterization of DLC-Coated and Uncoated Surfaces by New Directional Blanket Curvature Covering (DBCC) Method4citations

Places of action

Chart of shared publication
Laukkanen, Anssi
1 / 144 shared
Ronkainen, Helena
1 / 74 shared
Wolski, Marcin
1 / 3 shared
Podsiadlo, Pawel
1 / 3 shared
Holmberg, Kenneth
1 / 66 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Laukkanen, Anssi
  • Ronkainen, Helena
  • Wolski, Marcin
  • Podsiadlo, Pawel
  • Holmberg, Kenneth
OrganizationsLocationPeople

article

Characterization of DLC-Coated and Uncoated Surfaces by New Directional Blanket Curvature Covering (DBCC) Method

  • Laukkanen, Anssi
  • Ronkainen, Helena
  • Wolski, Marcin
  • Podsiadlo, Pawel
  • Holmberg, Kenneth
  • Stachowiak, Gwidon W.
Abstract

<p>Roughness and curvature of diamond-like carbon (DLC) surface coatings change with both scale and direction of a measurement. However, the changes are not detected by currently used standard parameters which are designed to work with isotropic surfaces at a single scale, thus providing only a limited information about multiscale and directional roughness and curvature. The problem of detailed roughness characterization of DLC-coated surfaces has been addressed in our previous work [Wolski et al. Multiscale characterization of 3D surface topography of DLC-coated and uncoated surfaces by directional blanket covering method. Wear 2017:388–389:47–56]. However, surface curvature description still remains an unresolved issue. To overcome this shortcoming, a directional blanket curvature covering (DBCC) method was developed. The method calculates curvature, peak and valley dimensions which quantify multiscale and directional curvature complexity of surface topography, peaks and valleys, respectively. Higher values of the dimensions represent higher complexity. In the current study, the DBCC method was used to analyse DLC-coated and uncoated bearing steel samples with increasing roughness and curvature. Its ability to discriminate between these two groups of surfaces was evaluated. Results showed that the method could detect minute changes in surface curvature at individual scales and directions. The method would be of interest to those who design wear-resistant systems and surfaces.</p>

Topics
  • surface
  • Carbon
  • steel
  • isotropic