Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wicht, Thomas

  • Google
  • 1
  • 7
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Partial Oxidation of Bio-methane over Nickel Supported on MgO–ZrO2 Solid Solutions15citations

Places of action

Chart of shared publication
Rupprechter, Günther
1 / 6 shared
Asencios, Yvan J. O.
1 / 1 shared
Assaf, Elisabete M.
1 / 3 shared
Stöger-Pollach, Michael
1 / 6 shared
Yigit, Nevzat
1 / 2 shared
Marcos, Francielle C. F.
1 / 2 shared
Lucrédio, Alessandra F.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Rupprechter, Günther
  • Asencios, Yvan J. O.
  • Assaf, Elisabete M.
  • Stöger-Pollach, Michael
  • Yigit, Nevzat
  • Marcos, Francielle C. F.
  • Lucrédio, Alessandra F.
OrganizationsLocationPeople

article

Partial Oxidation of Bio-methane over Nickel Supported on MgO–ZrO2 Solid Solutions

  • Rupprechter, Günther
  • Asencios, Yvan J. O.
  • Assaf, Elisabete M.
  • Stöger-Pollach, Michael
  • Yigit, Nevzat
  • Marcos, Francielle C. F.
  • Lucrédio, Alessandra F.
  • Wicht, Thomas
Abstract

<jats:title>Abstract</jats:title><jats:p>Syngas can be produced from biomethane via Partial Oxidation of Methane (POM), being an attractive route since it is ecofriendly and sustainable. In this work, catalysts of Ni supported on MgO–ZrO<jats:sub>2</jats:sub> solid solutions, prepared by a one-step polymerization method, were characterized by HRTEM/EDX, XRD, XPS, H<jats:sub>2</jats:sub>-TPR, and in situ XRD. All catalysts, including Ni/ZrO<jats:sub>2</jats:sub> and Ni/MgO as reference, were tested for POM (CH<jats:sub>4</jats:sub>:O<jats:sub>2</jats:sub> molar ratio 2, 750 ºC, 1 atm). NiO/MgO/ZrO<jats:sub>2</jats:sub> contained two solid-solutions, MgO–ZrO<jats:sub>2</jats:sub> and NiO-MgO, as revealed by XRD and XPS. Ni (30 wt%) supported on MgO–ZrO<jats:sub>2</jats:sub> solid solution exhibited high methane conversion and hydrogen selectivity. However, depending on the MgO amount (0, 4, 20, 40, 100 molar percent) major differences in NiO reducibility, growth of Ni<jats:sup>0</jats:sup> crystallite size during H<jats:sub>2</jats:sub> reduction and POM, and in carbon deposition rates were observed. Interestingly, catalysts with lower MgO content achieved the highest CH<jats:sub>4</jats:sub> conversion (~ 95%), high selectivity to H<jats:sub>2</jats:sub> (1.7) and CO (0.8), and low carbon deposition rates (0.024 g <jats:sub>carbon</jats:sub>.g<jats:sub>cat</jats:sub><jats:sup>−1</jats:sup> h<jats:sup>−1</jats:sup>) with Ni4MgZr (4 mol% MgO) turning out to be the best catalyst. In situ XRD during POM indicated metallic Ni nanoparticles (average crystallite size of 31 nm), supported by MgO–ZrO<jats:sub>2</jats:sub> solid solution, with small amounts of NiO–MgO being present as well. The presence of MgO also influenced the morphology of the carbon deposits, leading to filaments instead of amorphous carbon. A combustion-reforming mechanism is suggested and using a MgO–ZrO<jats:sub>2</jats:sub> solid solution support strongly improves catalytic performance, which is attributed to effective O<jats:sub>2</jats:sub>, CO<jats:sub>2</jats:sub> and H<jats:sub>2</jats:sub>O activation at the Ni/MgO–ZrO<jats:sub>2</jats:sub> interface.</jats:p>

Topics
  • nanoparticle
  • Deposition
  • impedance spectroscopy
  • amorphous
  • Carbon
  • nickel
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • Hydrogen
  • combustion
  • activation
  • Energy-dispersive X-ray spectroscopy
  • temperature-programmed reduction