Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pan, Wen

  • Google
  • 1
  • 7
  • 70

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Computationally Efficient Multiscale Neural Networks Applied to Fluid Flow in Complex 3D Porous Media70citations

Places of action

Chart of shared publication
Yin, Ying
1 / 1 shared
Jo, Honggeun
1 / 1 shared
Prodanović, Maša
1 / 1 shared
Kang, Qinjun
1 / 2 shared
Pyrcz, Michael J.
1 / 1 shared
Viswanathan, Hari S.
1 / 3 shared
Lubbers, Nicholas
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Yin, Ying
  • Jo, Honggeun
  • Prodanović, Maša
  • Kang, Qinjun
  • Pyrcz, Michael J.
  • Viswanathan, Hari S.
  • Lubbers, Nicholas
OrganizationsLocationPeople

article

Computationally Efficient Multiscale Neural Networks Applied to Fluid Flow in Complex 3D Porous Media

  • Yin, Ying
  • Jo, Honggeun
  • Prodanović, Maša
  • Pan, Wen
  • Kang, Qinjun
  • Pyrcz, Michael J.
  • Viswanathan, Hari S.
  • Lubbers, Nicholas
Abstract

<jats:title>Abstract</jats:title><jats:p>The permeability of complex porous materials is of interest to many engineering disciplines. This quantity can be obtained via direct flow simulation, which provides the most accurate results, but is very computationally expensive. In particular, the simulation convergence time scales poorly as the simulation domains become less porous or more heterogeneous. Semi-analytical models that rely on averaged structural properties (i.e., porosity and tortuosity) have been proposed, but these features only partly summarize the domain, resulting in limited applicability. On the other hand, data-driven machine learning approaches have shown great promise for building more general models by virtue of accounting for the spatial arrangement of the domains’ solid boundaries. However, prior approaches building on the convolutional neural network (ConvNet) literature concerning 2D image recognition problems do not scale well to the large 3D domains required to obtain a representative elementary volume (REV). As such, most prior work focused on homogeneous samples, where a small REV entails that the global nature of fluid flow could be mostly neglected, and accordingly, the memory bottleneck of addressing 3D domains with ConvNets was side-stepped. Therefore, important geometries such as fractures and vuggy domains could not be modeled properly. In this work, we address this limitation with a general multiscale deep learning model that is able to learn from porous media simulation data. By using a coupled set of neural networks that view the domain on different scales, we enable the evaluation of large (<jats:inline-formula><jats:alternatives><jats:tex-math>&gt;512^3</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>&gt;</mml:mo><mml:msup><mml:mn>512</mml:mn><mml:mn>3</mml:mn></mml:msup></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>) images in approximately one second on a single graphics processing unit. This model architecture opens up the possibility of modeling domain sizes that would not be feasible using traditional direct simulation tools on a desktop computer. We validate our method with a laminar fluid flow case using vuggy samples and fractures. As a result of viewing the entire domain at once, our model is able to perform accurate prediction on domains exhibiting a large degree of heterogeneity. We expect the methodology to be applicable to many other transport problems where complex geometries play a central role.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • simulation
  • laser emission spectroscopy
  • permeability
  • porosity
  • machine learning