Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ratajczak-Sitarz, Małgorzata

  • Google
  • 1
  • 4
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008X-ray, FT-IR, ESI MS and PM5 studies of Schiff base of gossypol with allylamine and its complexes with alkali metal cations and perchlorate anion17citations

Places of action

Chart of shared publication
Katrusiak, Andrzej
1 / 30 shared
Brzezinski, Bogumił
1 / 2 shared
Przybylski, Piotr
1 / 1 shared
Pyta, Krystian
1 / 1 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Katrusiak, Andrzej
  • Brzezinski, Bogumił
  • Przybylski, Piotr
  • Pyta, Krystian
OrganizationsLocationPeople

article

X-ray, FT-IR, ESI MS and PM5 studies of Schiff base of gossypol with allylamine and its complexes with alkali metal cations and perchlorate anion

  • Katrusiak, Andrzej
  • Brzezinski, Bogumił
  • Przybylski, Piotr
  • Ratajczak-Sitarz, Małgorzata
  • Pyta, Krystian
Abstract

<p>Crystals of the Schiff base derivative of gossypol with allylamine (GSBAL) were grown and subsequently examined by X-ray diffraction and FT-IR methods. The crystal space group is C2/c with a = 16.057(1) Å, b = 14.112(1) Å, c = 27.185(2) Å, β = 99.371(5)Å and Z = 8. In the crystal, GSBAL exists in the enamine-enamine tautomeric form. The FT-IR spectral features of the crystals are in agreement with the X-ray data indicating that both parts of the molecule are similarly intramolecular hydrogen-bonded but different intermolecular hydrogen-bonded, although the molecule is symmetrically substituted. On the basis of the electrospray ionization mass spectrometry (ESI MS) experiments, it has been shown for the first time that Schiff base of gossypol forms complexes with the perchlorate anion and metal cations simultaneously. The ESI MS spectra of the 1:1:1 mixtures of GSBAL:GOS:M <sup>+</sup>, in the positive and negative ion detection mode, have indicated the preferential formation of the 1:1 complexes of GSBAL with M<sup>+</sup> (Li, Na or K) and ClO<sub>4</sub><sup>-</sup> over the respective complexes forming between GOS and the metal cation or the anion. The PM5 semiempirical calculations have allowed visualization of the most energetically favourable structures of these two types of GSBAL complexes. © 2008 Springer Science+Business Media, LLC.</p>

Topics
  • impedance spectroscopy
  • x-ray diffraction
  • experiment
  • mass spectrometry
  • Hydrogen
  • forming
  • spectrometry
  • space group
  • Alkali metal
  • electrospray ionisation
  • liquid-liquid chromatography