Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zalutskii, V. P.

  • Google
  • 1
  • 5
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009Effect of biological media on the physical, chemical, and magnetic properties of carbonyl iron and nickel powders1citations

Places of action

Chart of shared publication
Ivashchenko, Olena
1 / 15 shared
Voinash, V. Z.
1 / 1 shared
Uvarova, I. V.
1 / 2 shared
Perekos, A. O.
1 / 1 shared
Boshitska, N. V.
1 / 1 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Ivashchenko, Olena
  • Voinash, V. Z.
  • Uvarova, I. V.
  • Perekos, A. O.
  • Boshitska, N. V.
OrganizationsLocationPeople

article

Effect of biological media on the physical, chemical, and magnetic properties of carbonyl iron and nickel powders

  • Ivashchenko, Olena
  • Voinash, V. Z.
  • Uvarova, I. V.
  • Perekos, A. O.
  • Zalutskii, V. P.
  • Boshitska, N. V.
Abstract

<p>The paper examines changes in carbonyl iron and nickel powders subjected to model biological media: water media and media containing human blood plasma. It is established that carbonyl iron powder interacts with biomedia containing blood plasma six times as fast as with water media. No oxidation or corrosion is observed in the process. The magnetic properties of the powder after the interaction with plasma-containing media do not practically deteriorate. Iron powder is intensively absorbed by blood plasma, Fe <sup>3+</sup> ions forming complex compounds with proteins. On the contrary, carbonyl nickel is not absorbed by blood plasma for five days, and the powder specific surface area and particle morphology remain practically unchanged after the interaction. Blood plasma seems to dissolve and transform metals according to the human body's demands. In the case of carbonyl iron, this process proceeds faster than corrosion does. In the case of carbonyl nickel, the opposite is observed. © 2009 Springer Science+Business Media, Inc.</p>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • compound
  • nickel
  • corrosion
  • forming
  • iron
  • iron powder