Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vliet, Lucas J. Van

  • Google
  • 2
  • 3
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2008Pore shape in the sodium chloride matrix of tablets after the addition of starch as a second component3citations
  • 2005Location-dependent analysis of porosity and pore direction in tablets10citations

Places of action

Chart of shared publication
Frijlink, Henderik W.
2 / 32 shared
Wu, Yu San
2 / 4 shared
Stokroos, Ietse
1 / 3 shared
Chart of publication period
2008
2005

Co-Authors (by relevance)

  • Frijlink, Henderik W.
  • Wu, Yu San
  • Stokroos, Ietse
OrganizationsLocationPeople

article

Location-dependent analysis of porosity and pore direction in tablets

  • Stokroos, Ietse
  • Frijlink, Henderik W.
  • Vliet, Lucas J. Van
  • Wu, Yu San
Abstract

<p>PURPOSE: Several phenomena in tablets indicate that an inhomogeneous pore distribution is formed during the compaction process. Examples are lamination and the capping of corners. In order to gain an understanding of the relation between structure and compact properties, analyzing the structure in a location dependent manner would be extremely useful. Our aim was to visualize and to quantitatively analyze the pore distribution in compacts.</p><p>METHODS: This was done by embedding a cubic (sodium chloride) compact with polymer, allowing the compact to be cut without disrupting the structure. By doing so, it was possible to make scanning electron microscopic images from different angles at different locations in the compact. These images were made binary with a two-means cluster algorithm (Isodata) after which the porosity could be calculated. Counting the number of transitions from the pixels in the pores to the pixels in the sodium chloride particles in two perpendicular directions allows us to construct a measure for the anisotropic connectivity of the particles.</p><p>RESULTS: The results show an increase in porosity toward the bottom of the compact and showed a preferred orientation of the pores in the direction of compression.</p><p>CONCLUSIONS: The proposed method is suitable for analyzing the pore distribution quantitatively and for evaluating anisotropy.</p>

Topics
  • impedance spectroscopy
  • pore
  • cluster
  • polymer
  • anisotropic
  • Sodium
  • porosity