People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lashgari, V. A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Kinetics of internal oxidation of Mn-steel alloys
Abstract
<p>Internal oxidation of three Mn-steel alloys with 1.7, 3.5 and 7.0 wt% Mn concentration at 950 °C in a gas mixture composed of nitrogen, hydrogen and water vapor with a dew point of +10°C was evaluated. For these alloys, the kinetics of internal oxidation are diffusion-controlled and obey parabolic growth rate law. The diffusion coefficient of oxygen and manganese determined from the observed internal oxidation kinetics are 3.35 × 10<sup>−7</sup> and 4.14 × 10<sup>−12</sup>cm<sup>2</sup>/s at 950 °C, respectively. The formed internal oxide precipitates are mainly composed of MnO. The solubility product of MnO in an austenitic iron matrix is estimated to be (7.66 ± 0.18) × 10<sup>−9</sup> mol fraction<sup>2</sup> at 950 °C. The numerical simulation of concentration depth profiles of precipitated oxygen is in agreement with depth profiles determined with image analysis and X-ray microanalysis. Validity of the numerical simulation in case of the phase transformation was also tested. When a 1.7 wt% Mn-steel alloy is oxidized at 850 °C (instead of 950 °C) with a dew point of +12 °C partial phase transformation from austenite to ferrite takes place due to the Mn depletion. The associated precipitated oxygen concentration depth profile can be predicted accurately with numerical simulation.</p>