People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rhazouani, O. El
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Ab initio study of thermoelectric properties of Cu3PSe4 and Cu3PS4: alternative materials for thermoelectric applications
Abstract
This letter discusses the thermoelectric properties of Cu3PSe4 and Cu3PS4 compounds, using the Ab initio calculations. These compounds are predicted to be good thermoelectric materials thanks to the nature of their band edge states. Seebeck coefficient of Cu3PSe4 exhibits a maximum value of 1256 µV/K at roopm temperature, whereas it is 2389 µV/K for Cu3PS4. Furthermore, the electrical conductivity is significantly enhanced with doping level while the electronic thermal conductivity is weakly increased. Besides, the factor of merit of these compounds shows a value around the unity only at low doping levels. Hence, this predicts that these compounds may present excellent thermoelectric properties, therefore they could be considered as alternatives for thermoelectric applications.