Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ścigała, Aleksandra

  • Google
  • 1
  • 4
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Copper nitride/silver nanostructures synthesized via wet chemical reduction method for the oxygen reduction reaction10citations

Places of action

Chart of shared publication
Szłyk, Edward
1 / 1 shared
Kamedulski, Piotr
1 / 1 shared
Szczęsny, Robert
1 / 2 shared
Trzcinski, Marek
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Szłyk, Edward
  • Kamedulski, Piotr
  • Szczęsny, Robert
  • Trzcinski, Marek
OrganizationsLocationPeople

article

Copper nitride/silver nanostructures synthesized via wet chemical reduction method for the oxygen reduction reaction

  • Ścigała, Aleksandra
  • Szłyk, Edward
  • Kamedulski, Piotr
  • Szczęsny, Robert
  • Trzcinski, Marek
Abstract

<jats:title>Abstract</jats:title><jats:p>This work presents attempts to synthesize silver-doped copper nitride nanostructures using chemical solution methods. Copper(II) nitrate and silver(I) nitrate were used as precursors and the oleylamine as a reducing and capping agent. Homogeneous Cu<jats:sub>3</jats:sub>N/Ag nanostructures with a diameter of ~ 20 nm were obtained in a one-pot synthesis by the addition of the copper(II) salt precursor to the already-synthesized silver nanoparticles (Ag NPs). Synthesis in a two-pot procedure performed by adding Ag NPs to the reaction medium of the Cu<jats:sub>3</jats:sub>N synthesis resulted in the formation of a Cu<jats:sub>3</jats:sub>N@Ag nanocomposite, in which Ag NPs are uniformly distributed in the Cu<jats:sub>3</jats:sub>N matrix. The morphology, structure, and chemical composition of the obtained specimens were studied by TEM, XRD, XPS, and FT-IR methods, while optical properties using UV–Vis spectroscopy and spectrofluorimetry. The band gap energy decreased for Cu<jats:sub>3</jats:sub>N/Ag (<jats:italic>E</jats:italic><jats:sub><jats:italic>g</jats:italic></jats:sub> = 2.1 eV), in relation to pure Cu<jats:sub>3</jats:sub>N (<jats:italic>E</jats:italic><jats:sub><jats:italic>g</jats:italic></jats:sub> = 2.4. eV), suggesting the insertion of Ag atoms into the Cu<jats:sub>3</jats:sub>N crystal lattice. Additionally, Cu<jats:sub>3</jats:sub>N and Cu<jats:sub>3</jats:sub>N/Ag nanostructures were loaded on graphene (GNP) and tested as a catalyst in the oxygen reduction reaction (ORR) by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The Cu<jats:sub>3</jats:sub>N/Ag-modified GNP hybrid material revealed catalytic activity superior to that of Cu<jats:sub>3</jats:sub>N-based GNP hybrid material and pure GNP, comparable to that of a commercial Pt/C electrode.</jats:p><jats:p><jats:bold>Graphical Abstract</jats:bold></jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • silver
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • Oxygen
  • nitride
  • chemical composition
  • transmission electron microscopy
  • copper
  • cyclic voltammetry
  • crystalline lattice