Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wheeler, G. N.

  • Google
  • 1
  • 8
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Toxicity and biodegradation of zinc ferrite nanoparticles in Xenopus laevis14citations

Places of action

Chart of shared publication
Muñoz-Bonilla, A.
1 / 2 shared
Rivero, M.
1 / 1 shared
Marín-Barba, M.
1 / 1 shared
Gutiérrez, L.
1 / 1 shared
Lozano-Velasco, E.
1 / 1 shared
Morris, C. J.
1 / 1 shared
Sánchez-Marcos, J.
1 / 5 shared
Ruiz, Amalia
1 / 4 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Muñoz-Bonilla, A.
  • Rivero, M.
  • Marín-Barba, M.
  • Gutiérrez, L.
  • Lozano-Velasco, E.
  • Morris, C. J.
  • Sánchez-Marcos, J.
  • Ruiz, Amalia
OrganizationsLocationPeople

article

Toxicity and biodegradation of zinc ferrite nanoparticles in Xenopus laevis

  • Muñoz-Bonilla, A.
  • Rivero, M.
  • Marín-Barba, M.
  • Gutiérrez, L.
  • Lozano-Velasco, E.
  • Wheeler, G. N.
  • Morris, C. J.
  • Sánchez-Marcos, J.
  • Ruiz, Amalia
Abstract

Zn-doped Fe3O4 magnetic nanoparticles have been proposed as the ideal ferrite for some biomedical applications like magnetic hyperthermia or photothermal therapy because of the possibility to adjust their size and chemical composition in order to design tailored treatments. However, reliable approaches are needed to risk assess Zn ferrite nanoparticles before clinical development. In this work, the in vitro toxicity of the nanoparticles was evaluated in five cellular models (Caco-2, HepG2, MDCK, Calu-3 and Raw 264.7) representing different target organs/systems (gastrointestinal system, liver, kidney, respiratory system and immune system). For the first time, these nanoparticles were evaluated in an in vivo Xenopus laevis model to study whole organism toxicity and their impact on iron and zinc metabolic pathways. Short- and long-term in vivo exposure studies provided insights into the contrasting adverse effects between acute and chronic exposure. Quantitative PCR combined with elemental analysis and AC magnetic susceptibility measurements revealed that at short-term exposure (72 h), the nanoparticles’ absorption process is predominant, with the consequent over-expression of metal transporters and metal response proteins. At long-term exposure (120 h), there is an upregulation of metal accumulation involved genes and the return to basal levels of both iron and zinc transporters, involved in the uptake of metals. This suggests that at this stage, the nanoparticles’ absorption process is residual compared with the following steps in metabolism, distribution and/or excretion processes, indicated by the increase of iron accumulation proteins at both transcriptional and translational level. This testing approach based on a battery of cellular systems and the use of the Xenopus laevis model could be a viable strategy for studying the toxicity, degradability and ultimately the long-term fate of zinc ferrites in the organism. [

Topics
  • nanoparticle
  • impedance spectroscopy
  • zinc
  • chemical composition
  • iron
  • toxicity
  • susceptibility
  • elemental analysis