Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mobbs, D.

  • Google
  • 1
  • 4
  • 52

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009Synthesis of alpha- and beta-FeOOH iron oxide nanoparticles in non-ionic surfactant medium52citations

Places of action

Chart of shared publication
Mccabe, R. W.
1 / 1 shared
Bashir, S.
1 / 2 shared
Leaver, M. S.
1 / 1 shared
Boxall, Colin
1 / 26 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Mccabe, R. W.
  • Bashir, S.
  • Leaver, M. S.
  • Boxall, Colin
OrganizationsLocationPeople

article

Synthesis of alpha- and beta-FeOOH iron oxide nanoparticles in non-ionic surfactant medium

  • Mccabe, R. W.
  • Bashir, S.
  • Leaver, M. S.
  • Mobbs, D.
  • Boxall, Colin
Abstract

<p>Forced hydrolysis of Fe(III) ions in acidic media was performed under controlled synthetic conditions to produce alpha- and beta-FeOOH iron oxides. The forced hydrolysis synthesis was carried out, separately, in an aqueous medium and the lamellar lyotropic liquid crystalline phase of a commercial non-ionic surfactant/water system. The FT-IR analyses confirmed formation of alpha- and beta-FeOOH iron oxides in the aqueous and the surfactant media with slight formation of ferrihydrite and haematite. TEM micrographs have shown that particles formed in the lamellar lyotropic phase are smaller than those produced in the aqueous medium with their smallest size dimension being constrained in the nanometre scale with a size ranging between 5 and 100 nm. Particles produced in the nanoscale size appeared to have different optical properties compared to their counterparts produced in the microscale size.</p>

Topics
  • nanoparticle
  • crystalline phase
  • transmission electron microscopy
  • iron
  • surfactant