People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thelander, Kimberly Dick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2015Electrical and Surface Properties of InAs/InSb Nanowires Cleaned by Atomic Hydrogencitations
- 2012High crystal quality wurtzite-zinc blende heterostructures in metal-organic vapor phase epitaxy-grown GaAs nanowirescitations
- 2011Crystal structure control in Au-free self-seeded InSb wire growth.citations
- 2008Control of GaP and GaAs Nanowire Morphology through Particle and Substrate Chemical Modification.citations
- 2007Directed growth of branched nanowire structures
- 2007Targeted deposition of Au aerosol nanoparticles on vertical nanowires for the creation of nanotreescitations
- 2006Crystal structure of branched epitaxial III-V nanotreescitations
- 2005A new understanding of au-assisted growth of III-V semiconductor nanowirescitations
- 2005Role of the Au/III-V interaction in the Au-assisted growth of III-V branched nanostructurescitations
- 2004Growth of GaP nanotree structures by sequential seeding of 1D nanowirescitations
Places of action
Organizations | Location | People |
---|
article
Targeted deposition of Au aerosol nanoparticles on vertical nanowires for the creation of nanotrees
Abstract
Complex tree-like nanostructures with controlled morphology are becoming increasingly important for the development of nanoscale devices. The position of branches on III-V semiconductor nanotrees is determined by the distribution of Au seed particles. Here we report the dependence of the distribution of Au aerosol nanoparticles on nanowires on parameters including distance between wires, particle size, wire length, wire diameter, III-V material and particle charge. It was observed that different wire lengths and separation distances as well as different particle polarities have a significant effect on the resulting particle distribution while different wire diameters, particle diameters, materials and deposition voltages do not.