Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hudáková, Mária Bali

  • Google
  • 1
  • 13
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Mechanochemical preparation of nanocrystalline stannite/chatkalite composite: kinetics of synthesis and thermoelectric properties1citations

Places of action

Chart of shared publication
Daneu, Nina
1 / 15 shared
Knížek, Karel
1 / 7 shared
Kubíčková, Lenka
1 / 2 shared
Šestinová, Oľga
1 / 1 shared
Džunda, Robert
1 / 1 shared
Kmječ, Tomáš
1 / 2 shared
Hejtmánek, Jiří
1 / 18 shared
Rajňák, Michal
1 / 1 shared
Balaz, Matej
1 / 6 shared
Baláž, Peter
1 / 9 shared
Navrátil, Jiří
1 / 7 shared
Achimovičová, Marcela
1 / 3 shared
Levinský, Petr
1 / 7 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Daneu, Nina
  • Knížek, Karel
  • Kubíčková, Lenka
  • Šestinová, Oľga
  • Džunda, Robert
  • Kmječ, Tomáš
  • Hejtmánek, Jiří
  • Rajňák, Michal
  • Balaz, Matej
  • Baláž, Peter
  • Navrátil, Jiří
  • Achimovičová, Marcela
  • Levinský, Petr
OrganizationsLocationPeople

article

Mechanochemical preparation of nanocrystalline stannite/chatkalite composite: kinetics of synthesis and thermoelectric properties

  • Daneu, Nina
  • Knížek, Karel
  • Kubíčková, Lenka
  • Hudáková, Mária Bali
  • Šestinová, Oľga
  • Džunda, Robert
  • Kmječ, Tomáš
  • Hejtmánek, Jiří
  • Rajňák, Michal
  • Balaz, Matej
  • Baláž, Peter
  • Navrátil, Jiří
  • Achimovičová, Marcela
  • Levinský, Petr
Abstract

<jats:title>Abstract</jats:title><jats:p>In this study we demonstrate the use of Cu, Fe, Sn and S elemental precursors to synthesize chatkalite/stannite nanocomposite by high-energy milling in both lab-scale and industrial-scale mills. The products were characterized by XRD, SEM, HRTEM, EDX, Mössbauer spectroscopy and magnetometry. For the determination of optimum milling conditions, the magnetization data of the synthesized samples were used as output values using a Taguchi experimental design. The formation of the product proceeds via a multistep process comprising binary sulphides (SnS and CuS) formation at the beginning and chatkalite Cu<jats:sub>6</jats:sub>FeSn<jats:sub>2</jats:sub>S<jats:sub>8</jats:sub>/stannite Cu<jats:sub>2</jats:sub>FeSnS<jats:sub>4</jats:sub> composite as the end products. The TEM images show tightly packed nanosized crystallites with the sizes in the range of tens of nanometers. Mössbauer study unveiled that iron is present in 3+ state instead of 2+ expected for stoichiometric phases. This discrepancy was explained by the presence of a small number of vacancies on Sn sites. Based on the thermoelectric measurements of the hot-pressed pellets, the calculated figure of merit reached a value of ZT = 0.27 at 600 K. The aim of this study is to prepare a representative of a promising class of environmentally acceptable thermoelectric materials in an environmentally sound solvent-free manner and characterize them while studying the kinetics of the reaction via magnetometry and the possibility to scale-up the solid-state synthesis process.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • grinding
  • milling
  • transmission electron microscopy
  • iron
  • Energy-dispersive X-ray spectroscopy
  • magnetization
  • Mössbauer spectroscopy