Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cesaro, Attilio

  • Google
  • 1
  • 7
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Thermal properties of iopamidol Crystalline anhydrous, hydrated and amorphous forms3citations

Places of action

Chart of shared publication
Maiocchi, Alessandro
1 / 1 shared
Elisei, Elena
1 / 3 shared
Uggeri, Fulvio
1 / 1 shared
Bertolotti, Federica
1 / 15 shared
Masciocchi, Norberto
1 / 21 shared
Bellich, Barbara
1 / 1 shared
Fonzo, Silvia Di
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Maiocchi, Alessandro
  • Elisei, Elena
  • Uggeri, Fulvio
  • Bertolotti, Federica
  • Masciocchi, Norberto
  • Bellich, Barbara
  • Fonzo, Silvia Di
OrganizationsLocationPeople

article

Thermal properties of iopamidol Crystalline anhydrous, hydrated and amorphous forms

  • Maiocchi, Alessandro
  • Elisei, Elena
  • Uggeri, Fulvio
  • Cesaro, Attilio
  • Bertolotti, Federica
  • Masciocchi, Norberto
  • Bellich, Barbara
  • Fonzo, Silvia Di
Abstract

<p>Three crystal forms of iopamidol, an iodinated contrast media used in radiology, have been so far elucidated: an anhydrous, a monohydrate and a pentahydrate form (labeled hereafter as W0, W1 and W5, respectively), which showed the occurrence of different conformations, atropisomeric in nature. Specifically, the anhydrous and monohydrate forms contain iopamidol with a "syn'' conformation of the two symmetric sidearms, while an "anti'' conformation was found in the pentahydrate, making it a conformational (pseudo)-polymorph of the first two. The three crystal forms have been here investigated by means of DSC, variable temperature X-ray powder diffraction and Raman spectroscopy. This study enabled us to highlight the thermal-induced transformations, leading to the discovery of new crystal forms, for a total of four hydrated and four distinct anhydrous phases. In particular, the DSC curve of W0 revealed only a reversible solid-solid transition at around 180 degrees C before melting, with subsequent degradation above 300 degrees C. W1, after the loss of lattice water around 100 degrees C, shows a characteristic split peak at about 250 degrees C, which is attributed to melting. Below 150 degrees C, powder diffraction of W1 suffers of minor changes, with a smooth variation of the lattice parameters, in agreement with a progressive loss of water in a reversible event, monitored also by DSC. At variance, W5 evidenced an irreversible loss of water in three distinct steps, for three, one and one H2O molecules each, respectively; subsequent transitions occur at 140 and 180 degrees C, before melting at 240 degrees C. Three clearly visible transformations were also detected by variable temperature powder diffraction measurements, where the loss of three molecules of water in a single step, generating a bis-hydrated species (W2), is followed by a second dehydration process leading, above 75 degrees C, to a new monohydrate phase W10, different from the known W1 form. The Raman spectra of the three crystal forms, measured upon heating up to 160 degrees C, evidenced changes in spectral regions of amides that, according to our simulations of the vibrational properties, can be attributed to changes of the hydration properties and, more significantly, in terms of the "syn'' and "anti'' conformations.</p>

Topics
  • impedance spectroscopy
  • amorphous
  • phase
  • simulation
  • differential scanning calorimetry
  • Raman spectroscopy