Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Secula, Marius Sebastian

  • Google
  • 2
  • 6
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024The Impact of Biomass Composition Variability on the Char Features and Yields Resulted through Thermochemical Processes5citations
  • 2014A new photoluminescent silica aerogel based on N-hydroxysuccinimide-Tb(III) complex7citations

Places of action

Chart of shared publication
Armanu, Emanuel
1 / 1 shared
Volf, Irina
1 / 2 shared
Tofanica, Bogdan-Marian
1 / 1 shared
Stan, Corneliu Sergiu
1 / 1 shared
Marcotte, Nathalie
1 / 8 shared
Popa, Marcel
1 / 6 shared
Chart of publication period
2024
2014

Co-Authors (by relevance)

  • Armanu, Emanuel
  • Volf, Irina
  • Tofanica, Bogdan-Marian
  • Stan, Corneliu Sergiu
  • Marcotte, Nathalie
  • Popa, Marcel
OrganizationsLocationPeople

article

A new photoluminescent silica aerogel based on N-hydroxysuccinimide-Tb(III) complex

  • Secula, Marius Sebastian
  • Stan, Corneliu Sergiu
  • Marcotte, Nathalie
  • Popa, Marcel
Abstract

The paper describes the preparation of a new photoluminescent silica aerogel by embedding a new Tb(III) complex in a silica matrix by using N-hydroxysuccinimide as ligand. The Tb(III) complex prepared at a metal to ligand ratio of 1:3 (mol%) exhibits strong photoluminescence as a result of specific radiative transitions within the Tb(III) cation with the most intense peak located at 543 nm due to 5D4 ? 7F5 transition. The synthesized complex was doped in the silica matrix through a catalyzed sol-gel process. After ageing in ethanol, the alcogel was dried under supercritical regime by exchanging the ethanol with liquid carbon dioxide followed by supercritical evaporation. The leaching of the free complex from the alcogel during ageing and solvent exchange phases was found to be minimal most likely due to the interactions between chemical groups of complex with those specific to silica matrix. The obtained regular shaped monolithic aerogel preserved the remarkable photoluminescent properties and also improved the thermal stability of the free complex. Both, the free complex and doped aerogel were characterized through thermal analysis, FT-IR, powder X-ray diffraction, Scanning electron microscopy and fluorescence spectroscopy. For comparison purposes, an undoped silica aerogel was also prepared and investigated through FT-IR, BET analysis and powder X-ray diffraction. The excellent photoluminescent properties might recommend the prepared aerogel for applications in optoelectronic devices where photonic conversion materials are required.

Topics
  • photoluminescence
  • Carbon
  • phase
  • scanning electron microscopy
  • thermal analysis
  • powder X-ray diffraction
  • leaching
  • aging
  • evaporation
  • fluorescence spectroscopy