Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sterba, Johannes H.

  • Google
  • 3
  • 10
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2013Investigation of the isotopic ratio I-129/I in petrified wood7citations
  • 2013Volcanic glass under fire - a comparison of three complementary analytical methods7citations
  • 2011Raising the temper—μ-spot analysis of temper inclusions in experimental ceramics2citations

Places of action

Chart of shared publication
Wallner, Gabriele
1 / 2 shared
Cichocki, Otto
1 / 1 shared
Steier, Peter
1 / 5 shared
Jabbar, Tania
1 / 1 shared
Neelmeijer, Christian
1 / 1 shared
Eder, Fabienne M.
1 / 1 shared
Ntaflos, Theodoros
1 / 2 shared
Bichler, Max
1 / 1 shared
Merchel, Silke
1 / 3 shared
Munnik, Frans
1 / 16 shared
Chart of publication period
2013
2011

Co-Authors (by relevance)

  • Wallner, Gabriele
  • Cichocki, Otto
  • Steier, Peter
  • Jabbar, Tania
  • Neelmeijer, Christian
  • Eder, Fabienne M.
  • Ntaflos, Theodoros
  • Bichler, Max
  • Merchel, Silke
  • Munnik, Frans
OrganizationsLocationPeople

article

Raising the temper—μ-spot analysis of temper inclusions in experimental ceramics

  • Sterba, Johannes H.
  • Munnik, Frans
Abstract

Provenancing of ancient ceramics is a highly important scientific tool for archaeological studies. In general, ceramics are not made from the original clay as it is found in deposits. To produce the needed physical properties in the finished product, the clay has to be either tempered by adding sands or biological materials, or levigated, to remove the coarse fraction. Thus, the chemical composition of the finished ceramic differs from the composition of the original clay bed. To overcome this obfuscation, any information that can be gained about the temper is useful. In a small series, several pieces of ceramic were produced from known clay and tempers and the resulting ceramics analysed by neutron activation analysis (NAA). As many attempts to physically separate the temper from the clay matrix have failed, μ-spot analysis of temper inclusions was performed at the microbeam particle induced X-ray Emission (μ-PIXE) facility in Rossendorf and with laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) at the Aberystwyth University in Wales. It could be shown that from a small number of measurements, a general impression of the temper used could be gained. Furthermore the μ-spot methods and the bulk data gained from INAA are highly comparable, extending the set of elements that can be measured. With this information, the influence of the temper on the bulk composition of the finished product can be estimated, which potentially adds crucial information to subsequent dilution calculations.

Topics
  • impedance spectroscopy
  • inclusion
  • chemical composition
  • activation
  • ceramic
  • biological material
  • neutron activation analysis
  • particle-induced X-ray emission spectroscopy
  • laser ablation
  • inductively coupled plasma mass spectrometry