Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ingo, G. M.

  • Google
  • 1
  • 9
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Aging and Environmental Effects on the Superconductor $$left[{{text{Y}}}_{1;-;x}{{text{Ca}}}_{x}right]{{text{SrBaCu}}}_{2.80}{left({{text{BO}}}_{3}right)}_{0.20}{{text{O}}}_{y}$$ with $$0.10;le;x;le;0.50$$  1citations

Places of action

Chart of shared publication
Riccucci, C.
1 / 2 shared
González, J. C.
1 / 5 shared
Pascucci, M.
1 / 1 shared
Valladares, L. De Los Santos
1 / 3 shared
Cornejo, H. E. Sanchez
1 / 1 shared
Barnes, C. H. W.
1 / 7 shared
Carlo, G. Di
1 / 11 shared
Dominguez, A. G. Bustamante
1 / 2 shared
Aguiar, J. Albino
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Riccucci, C.
  • González, J. C.
  • Pascucci, M.
  • Valladares, L. De Los Santos
  • Cornejo, H. E. Sanchez
  • Barnes, C. H. W.
  • Carlo, G. Di
  • Dominguez, A. G. Bustamante
  • Aguiar, J. Albino
OrganizationsLocationPeople

article

Aging and Environmental Effects on the Superconductor $$left[{{text{Y}}}_{1;-;x}{{text{Ca}}}_{x}right]{{text{SrBaCu}}}_{2.80}{left({{text{BO}}}_{3}right)}_{0.20}{{text{O}}}_{y}$$ with $$0.10;le;x;le;0.50$$  

  • Riccucci, C.
  • González, J. C.
  • Pascucci, M.
  • Valladares, L. De Los Santos
  • Cornejo, H. E. Sanchez
  • Barnes, C. H. W.
  • Carlo, G. Di
  • Ingo, G. M.
  • Dominguez, A. G. Bustamante
  • Aguiar, J. Albino
Abstract

<jats:title>Abstract</jats:title><jats:p>The long-term (more than 20 years) aging effect and degradation study of a <jats:inline-formula><jats:alternatives><jats:tex-math>[{{{Y}}}_{1\;-\;x}{{{Ca}}}_{x}]{{{SrBaCu}}}_{2.80}{({{{BO}}}_{3})}_{0.20}{{{O}}}_{y}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mfenced><mml:msub><mml:mtext>Y</mml:mtext><mml:mrow><mml:mn>1</mml:mn><mml:mspace/><mml:mo>-</mml:mo><mml:mspace/><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mtext>Ca</mml:mtext><mml:mi>x</mml:mi></mml:msub></mml:mfenced><mml:msub><mml:mtext>SrBaCu</mml:mtext><mml:mrow><mml:mn>2.80</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mfenced><mml:msub><mml:mtext>BO</mml:mtext><mml:mn>3</mml:mn></mml:msub></mml:mfenced><mml:mrow><mml:mn>0.20</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mtext>O</mml:mtext><mml:mi>y</mml:mi></mml:msub></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> powder ceramic superconductors with <jats:inline-formula><jats:alternatives><jats:tex-math>0.10\;\;x\;\;0.50</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>0.10</mml:mn><mml:mspace/><mml:mo>≤</mml:mo><mml:mspace/><mml:mi>x</mml:mi><mml:mspace/><mml:mo>≤</mml:mo><mml:mspace/><mml:mn>0.50</mml:mn></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> are studied by X-ray diffraction and DC Magnetic Property Measurement System (DC-MPMS-SQUID). The samples prepared by solid state reaction were well characterized and stored at normal conditions of pressure and temperature for more than 20 years. The aged samples present the formation of BaCO<jats:sub>3</jats:sub> due to the exposure with the environment during that period. The temperature dependence of the magnetization under <jats:italic>H</jats:italic><jats:sub>ext</jats:sub> = 10 Oe reveal that the superconducting state remains in the samples, except for that with <jats:italic>x</jats:italic> = 0.10, where a higher magnetic field (20 kOe) is required to be applied to observe a superconducting response. Remarkably, the samples show the same <jats:italic>T</jats:italic><jats:sub>C</jats:sub> values despite the aging indicating that the magnetic alignment of the formed BaCO<jats:sub>3</jats:sub> affects the magnetic propertied of the whole sample but not the superconducting alignment of the doped YBCO. This is also reflected in the <jats:inline-formula><jats:alternatives><jats:tex-math>^{-1}({{T}})</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mtext>T</mml:mtext><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> plots at normal state, which show both ferromagnetic and antiferromagnetic contribution, in contrast to what was obtained in the pristine samples which only presented antiferromagnetic coupling. From <jats:italic>M</jats:italic>(<jats:italic>H</jats:italic>) loops, the critical current density values at 10 K are obtained by using the critical Bean model in order to estimate the transport capabilities of the aged powders.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • x-ray diffraction
  • aging
  • current density
  • ceramic
  • magnetization
  • aging