Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Morgan, Kelsey M.

  • Google
  • 1
  • 4
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Fabrication of Superconducting Mo/Cu Bilayers Using Ion-Beam-Assisted e-Beam Evaporation11citations

Places of action

Chart of shared publication
Mccammon, Dan
1 / 5 shared
Kripps, Kari L.
1 / 1 shared
Jaeckel, Felix T.
1 / 1 shared
Zhang, Shuo
1 / 4 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Mccammon, Dan
  • Kripps, Kari L.
  • Jaeckel, Felix T.
  • Zhang, Shuo
OrganizationsLocationPeople

article

Fabrication of Superconducting Mo/Cu Bilayers Using Ion-Beam-Assisted e-Beam Evaporation

  • Mccammon, Dan
  • Morgan, Kelsey M.
  • Kripps, Kari L.
  • Jaeckel, Felix T.
  • Zhang, Shuo
Abstract

Superconducting/normal metal bilayers with tunable transition temperature are a critical ingredient to the fabrication of high-performance transition edge sensors. Popular material choices include Mo/Au and Mo/Cu, which exhibit good environmental stability and provide low resistivity films to achieve adequate thermal conductivity. The deposition of high-quality Mo films requires sufficient adatom mobility, which can be provided by energetic ions in sputter deposition or by heating the substrate in an e-beam evaporation process. The bilayer T_c depends sensitively on the exact deposition conditions of the Mo layer and the superconducting/normal metal interface. Because the individual contributions (strain, crystalline structure, contamination) are difficult to disentangle and control, reproducibility remains a challenge. Recently, we have demonstrated that low-energy ion-beam-assisted e-beam evaporation offers an alternative route to reliably produce high-quality Mo films without the use of substrate heating. The energy and momentum delivered by the ion beam provides an additional control knob to tune film properties such as resistivity and stress. In this report we describe modifications made to the commercial end-Hall ion source to avoid iron contamination allowing us to produce superconducting Mo films. We show that the ion beam is effective at enhancing the bilayer interface transparency and that bilayers can be further tuned towards reduced T_c and higher conductivity by vacuum annealing....

Topics
  • Deposition
  • impedance spectroscopy
  • resistivity
  • mobility
  • iron
  • annealing
  • thermal conductivity
  • evaporation